Thursday, November 25, 2021

<< >>  
2021. 10
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2021. 11
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
2021. 12
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2021-11-30 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Large clique subdivisions in graphs without small dense subgraphs 인쇄
by 임성혁(KAIST)
What is the largest number $f(d)$ where every graph with average degree at least $d$ contains a subdivision of $K_{f(d)}$? Mader asked this question in 1967 and $f(d) = \Theta(\sqrt{d})$ was proved by Bollob\'as and Thomason and independently by Koml\'os and Szemer\'edi. This is best possible by considering a disjoint union of $K_{d,d}$. However, this example contains a much smaller subgraph with the almost same average degree, for example, one copy of $K_{d,d}$. In 2017, Liu and Montgomery proposed the study on the parameter $c_{\varepsilon}(G)$ which is the order of the smallest subgraph of $G$ with average degree at least $\varepsilon d(G)$. In fact, they conjectured that for small enough $\varepsilon>0$, every graph $G$ of average degree $d$ contains a clique subdivision of size $\Omega(\min\{d, \sqrt{\frac{c_{\varepsilon}(G)}{\log c_{\varepsilon}(G)}}\})$. We prove that this conjecture holds up to a multiplicative $\min\{(\log\log d)^6,(\log \log c_{\varepsilon}(G))^6\}$-term. As a corollary, for every graph $F$, we determine the minimum size of the largest clique subdivision in $F$-free graphs with average degree $d$ up to multiplicative polylog$(d)$-term. This is joint work with Jaehoon Kim, Youngjin Kim, and Hong Liu.
2021-11-26 / 13:30 ~ 15:00
학과 세미나/콜로퀴엄 - 박사논문심사: 특별한 입방다양체의 준등장 불변량 인쇄
by 오상록(KAIST)
심사위원장: 백형렬, 심사위원: 최서영, 박정환, 김상현(겸직교수), 이상진(건국대 수학과)
2021-12-01 / 13:00 ~ 14:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by ()
This series of lectures will focus on recent developments of the so-called a-contraction theory and its application to the study of discontinuous flow at high Reynolds numbers. We will first introduce the classical framework to study the stability of 1D shocks for compressible flows. Recent multi-D applications will be presented next, both in the context of compressible and incompressible flows.
2021-11-25 / 12:25 ~ 12:45
대학원생 세미나 - 대학원생 세미나: Eigenvalues and parity factors in graphs 인쇄
by 김동규(KAIST & IBS)
Let $G$ be a graph and let $g, f$ be nonnegative integer-valued functions defined on $V(G)$ such that $g(v) \le f(v)$ and $g(v) \equiv f(v) \pmod{2}$ for all $v \in V(G)$. A $(g,f)$-parity factor of $G$ is a spanning subgraph $H$ such that for each vertex $v \in V(G)$, $g(v) \le d_H(v) \le f(v)$ and $f(v)\equiv d_H(v) \pmod{2}$. In this paper, we prove sharp upper bounds for certain eigenvalues in an $h$-edge-connected graph $G$ with given minimum degree to guarantee the existence of a $(g,f)$-parity factor; we provide graphs showing that the bounds are optimal. This is a joint work with Suil O.
2021-11-25 / 12:00 ~ 12:20
대학원생 세미나 - 대학원생 세미나: A new elementary proof of the central limit theorem 인쇄
by 진우영(KAIST)
The proof of the central limit theorem (CLT) is often deferred to a graduate course in probability because the notion of characteristic functions is sometimes considered too advanced. I’ll start the talk by reviewing the past efforts to provide an elementary proof of the CLT which is not based on characteristic functions. Then I will explain a new proof of the CLT that derives it from the de Moivre-Laplace theorem, which is the CLT for Bernoulli random variables. The de Moivre-Laplace theorem is the first instance of the CLT in the history, and can be proved directly by computation.
2021-11-25 / 18:00 ~ 19:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of quantitative data now being generated. This sets a new challenge for the field – to develop, calibrate and analyse new models to interpret these data. In this talk I will use examples relating to intracellular transport and cell motility to showcase how quantitative comparisons between models and data can help tease apart subtle details of biological mechanisms.
2021-11-26 / 15:00 ~ 16:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 옥지훈(서강대학교)
In recent years, local regularity theory for weak solutions to nonlocal equations with fractional orders has been studied extensively. In this talk, we discuss on local regularity for weak solutions to nonlocal equations with nonstandard growth and differentiability. In particular, we consider nonlocal equations of a variable exponent type, a double phase type and an Orlicz type.
2021-11-25 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: Mathematical modeling for infectious disease using epidemiological data 인쇄
by 이효정(경북대학교 통계학과)
The new infectious disease are emerging around the world. Coronavirus disease 2019 (COVID-19) caused by a novel coronavirus has emerged and has been rapidly spreading. The World Health Organization (WHO) declared the COVID-19 outbreak a global pandemic on March 11, 2020. Mathematical modelling plays a key role in interpreting the epidemiological data on the outbreak of infectious disease. Moreover, mathematical modeling can give us an early warning about the size of the outbreak. First, we construct a mathematical model to estimate the effective reproduction numbers, which assess the effect of control interventions. Second, we forecast the COVID-19 cases according to the different effect of control interventions. Finally, the most effective intervention can be suggested in terms of modeling approach. In this talk, I’d like to briefly introduce the main results of recent research on the mathematical modeling for various infectious diseases.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download