Tuesday, August 24, 2021

<< >>  
2021. 7
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2021. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2021. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2021-08-31 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Representations of even-cycle matroids 인쇄
by 허철원(성균관대)
A signed graph is a pair $(G,\Sigma)$ where $G$ is a graph and $\Sigma$ is a subset of edges of $G$. A cycle $C$ of $G$ is a subset of edges of $G$ such that every vertex of the subgraph of $G$ induced by $C$ has an even degree. We say that $C$ is even in $(G,\Sigma)$ if $|C \cap \Sigma|$ is even; otherwise, $C$ is odd. A matroid $M$ is an even-cycle matroid if there exists a signed graph $(G,\Sigma)$ such that circuits of $M$ precisely corresponds to inclusion-wise minimal non-empty even cycles of $(G,\Sigma)$. For even-cycle matroids, two fundamental questions arise: (1) what is the relationship between two signed graphs representing the same even-cycle matroids? (2) how many signed graphs can an even-cycle matroid have? For (a), we characterize two signed graphs $(G_1,\Sigma_1)$ and $(G_2,\Sigma_2)$ where $G_1$ and $G_2$ are $4$-connected that represent the same even-cycle matroids. For (b), we introduce pinch-graphic matroids, which can generate exponentially many representations even when the matroid is $3$-connected. An even-cycle matroid is a pinch-graphic matroid if there exists a signed graph with a pair of vertices such that every odd cycle intersects with at least one of them. We prove that there exists a constant $c$ such that if a matroid is even-cycle matroid that is not pinch-graphic, then the number of representations is bounded by $c$. This is joint work with Bertrand Guenin and Irene Pivotto.
2021-08-24 / 15:30 ~ 16:30
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()

2021-08-24 / 14:00 ~ 15:10
학과 세미나/콜로퀴엄 - 학부생 콜로퀴엄: 인쇄
by ()

2021-08-24 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: A Constant-factor Approximation for Weighted Bond Cover 인쇄
by 김은정(CNRS)
The Weighted $\mathcal F$-Vertex Deletion for a class $\mathcal F$ of graphs asks, given a weighted graph $G$, for a minimum weight vertex set $S$ such that $G-S\in\mathcal F$. The case when $\mathcal F$ is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for Weighted $\mathcal F$-Vertex Deletion. Only three cases of minor-closed $\mathcal F$ are known to admit constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. We study the problem for the class $\mathcal F$ of $\theta_c$-minor-free graphs, under the equivalent setting of the Weighted c-Bond Cover, and present a constant-factor approximation algorithm using the primal-dual method. For this, we leverage a structure theorem implicit in [Joret et al., SIDMA’14] which states the following: any graph $G$ containing a $\theta_c$-minor-model either contains a large two-terminal protrusion, or contains a constant-size $\theta_c$-minor-model, or a collection of pairwise disjoint constant-sized connected sets that can be contracted simultaneously to yield a dense graph. In the first case, we tame the graph by replacing the protrusion with a special-purpose weighted gadget. For the second and third case, we provide a weighting scheme which guarantees a local approximation ratio. Besides making an important step in the quest of (dis)proving a constant-factor approximation for Weighted $\mathcal F$-Vertex Deletion, our result may be useful as a template for algorithms for other minor-closed families. This is joint work with Euiwoong Lee and Dimitrios M. Thilikos.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download