Tuesday, January 25, 2022

<< >>  
2021. 12
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2022. 1
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2022. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28
2022-01-26 / 13:00 ~ 14:00
IBS-KAIST 세미나 - IBS-KAIST 세미나: 인쇄
by 김항준()
Variable selection is an approach to identifying a set of covariates that are truly important to explain the feature of a response variable. It is closely connected or belongs to model selection approaches. This talk provides a gentle introduction to Bayesian variable selection methods. The basic notion of variable selection is introduced, followed by several Bayesian approaches with a simple application example.
2022-01-25 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond) 인쇄
by 권오정(인천대 / IBS 이산수학그룹)
In a reduction sequence of a graph, vertices are successively identified until the graph has one vertex. At each step, when identifying $u$ and $v$, each edge incident to exactly one of $u$ and $v$ is coloured red. Bonnet, Kim, Thomassé, and Watrigant [FOCS 2020] defined the twin-width of a graph $G$ to be the minimum integer $k$ such that there is a reduction sequence of $G$ in which every red graph has maximum degree at most $k$. For any graph parameter $f$, we define the reduced-$f$ of a graph $G$ to be the minimum integer $k$ such that there is a reduction sequence of $G$ in which every red graph has $f$ at most $k$. Our focus is on graph classes with bounded reduced-bandwidth, which implies and is stronger than bounded twin-width (reduced-maximum-degree). We show that every proper minor-closed class has bounded reduced-bandwidth, which is qualitatively stronger than a result of Bonnet et al. for bounded twin-width. In many instances, we also make quantitative improvements. For example, all previous upper bounds on the twin-width of planar graphs were at least $2^{1000}$. We show that planar graphs have reduced-bandwidth at most $466$ and twin-width at most $583$; moreover, the witnessing reduction sequence can be constructed in polynomial time. We show that $d$-powers of graphs in a proper minor-closed class have bounded reduced-bandwidth (irrespective of the degree of the vertices). This is joint work with Édouard bonnet and David Wood.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download