Tuesday, August 2, 2022

<< >>  
2022. 7
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2022. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2022. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2022-08-08 / 15:00 ~ 16:30
학과 세미나/콜로퀴엄 - 기타: Algebraic Surfaces 인쇄
by 금종해 (특별강연)(KMS)

2022-08-09 / 14:00 ~ 16:00
학과 세미나/콜로퀴엄 - 기타: (Undergrad student seminar) Basic properties and structures of Riemann surfaces via Čech cohomology 인쇄
by 김재홍(KAIST)
(학사과정 학생 개별연구 결과 발표 세미나) Čech cohomology is the direct limit of cohomology taken from the cochain complex obtained by an open cover and a sheaf. In this talk we will derive some important results about Riemann surfaces such as Riemann-Roch theorem and Serre Duality, regarding low level Čech cohomologies. We will also discuss some basic structure and properties of Riemann surfaces using these results, focusing on genus and the embeddings.
2022-08-09 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Directed flow-augmentation 인쇄
by 김은정(CNRS, LAMSADE)
We show a flow-augmentation algorithm in directed graphs: There exists a polynomial-time algorithm that, given a directed graph G, two integers $s,t\in V(G)$, and an integer $k$, adds (randomly) to $G$ a number of arcs such that for every minimal st-cut $Z$ in $G$ of size at most $k$, with probability $2^{−\operatorname{poly}(k)}$ the set $Z$ becomes a minimum $st$-cut in the resulting graph. The directed flow-augmentation tool allows us to prove fixed-parameter tractability of a number of problems parameterized by the cardinality of the deletion set, whose parameterized complexity status was repeatedly posed as open problems: (1) Chain SAT, defined by Chitnis, Egri, and Marx [ESA'13, Algorithmica'17], (2) a number of weighted variants of classic directed cut problems, such as Weighted st-Cut, Weighted Directed Feedback Vertex Set, or Weighted Almost 2-SAT. By proving that Chain SAT is FPT, we confirm a conjecture of Chitnis, Egri, and Marx that, for any graph H, if the List H-Coloring problem is polynomial-time solvable, then the corresponding vertex-deletion problem is fixed-parameter tractable. Joint work with Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download