Tuesday, April 12, 2022

<< >>  
2022. 3
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2022. 4
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
2022. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2022-04-13 / 16:00 ~ 17:00
IBS-KAIST 세미나 - IBS-KAIST 세미나: 인쇄
by ()
Extension problems through a small singular set appear throughout complex analysis. After a short reminder of some classical results we shall focus on problems of extending (pluri)subharmonic functions. In particular we shall focus on new techniques coming from PDEs that lead to resolutions of several questions in the field. The talk is partially based on joint works with Zywomir Dinew.
2022-04-14 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by 김항준()
Ordinary differential equations are useful in modeling the periodic behavior of organisms, such as circadian rhythm, based on known biological knowledge and researchers' hypotheses. The theoretical mathematical models are calibrated to the experimental measurements by estimating a set of unknown model parameters. Traditional parameter estimation with mathematical models often focuses only on the point estimation relying on an optimization method such as simulated annealing, but it often neglects the uncertainty in point estimates and suffers from the local trap issue. This talk provides a gentle introduction to Bayesian analysis focusing on its usefulness in uncertainty quantification; introduces a Bayesian computing method with an advanced Markov chain Monte Carlo called the generalized multiset sampler; and illustrates the proposed Bayesian inference with circadian oscillations observed in a model filamentous fungus, Neurospora crassa.
2022-04-14 / 11:00 ~ 12:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Tuberculosis (TB) is one of the world’s deadliest infectious diseases. Caused by the pathogen Mycobacterium tuberculosis (Mtb), the standard regimen for treating TB consists of treatment with multiple antibiotics for at least six months. There are a number of complicating factors that contribute to the need for this long treatment duration and increase the risk of treatment failure. The structure of granulomas, lesions forming in lungs in response to Mtb infection, create heterogeneous antibiotic distributions that limit antibiotic exposure to Mtb. We can use a systems biology approach pairing experimental data from non-human primates with computational modeling to represent and predict how factors impact antibiotic regimen efficacy and granuloma bacterial sterilization. We utilize an agent-based, computational model that simulates granuloma formation, function and treatment, called GranSim. A goal in improving antibiotic treatment for TB is to find regimens that can shorten the time it takes to sterilize granulomas while minimizing the amount of antibiotic required. We also created a whole host model, called HOSTSIM, to study Mtb dynamics within a human host. Overall, we use these models to help better understand TB treatment and strengthen our ability to predict regimens that can improve clinical treatment of TB.
2022-04-14 / 10:30 ~ 10:55
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
TBA
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download