Tuesday, July 5, 2022

<< >>  
2022. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2022. 7
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2022. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2022-07-12 / 16:00 ~ 17:15
SAARC 세미나 - SAARC 세미나: 인쇄
by 김기현()
In this talk, I will discuss some recent developments on the long-term dynamics for the self-dual Chern-Simons-Schrödinger equation (CSS) within equivariantsymmetry. CSS is a gauge-covariant 2D cubic nonlinear Schrödingerequation, which admits the L2-scaling/pseudoconformalinvariance and soliton solutions.I will first discuss soliton resolution for this model, which is a remarkable consequence of the self-duality and non-local nonlinearity that are distinguished features of CSS. Next, I will discuss the blow-up dynamics (singularity formation) for CSS and introduce an interesting instability mechanism (rotational instability) of finite-time blow-up solutions. This talk is based on joint works with SoonsikKwon and Sung-JinOh.
2022-07-12 / 15:00 ~ 16:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 오성진(UC버클리)
In this talk, I will introduce a general method for understanding the late-time tail for solutions to wave equations on asymptotically flat spacetimeswith odd spatial dimensions. A particular consequence of the method is a re-proof of Price’s law-type results, which concern the sharp decay rate of the late-timetailson stationary spacetimes. Moreover, the method also applies to dynamical spacetimes. In this case, I will explain how the late-timetailsare in general different(!) from the stationary case in the presence of dynamical and/or nonlinear perturbations of the problem. This is joint work with Jonathan Luk(Stanford).
2022-07-05 / 16:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Reconstruction of gene regulatory networks (GRNs) is a powerful approach to capture a prioritized gene set controlling cellular processes. In our previous study, we developed TENET a GRN reconstructor from single cell RNA sequencing (scRNAseq). TENET has a superior capability to identify key regulators compared with other algorithms. However, accurate inference of gene regulation is still challenging. Here, we suggest an integrative strategy called TENET+ by combining single cell transcriptome and chromatin accessibility data. By applying TENET+ to a paired scRNAseq and scATACseq dataset of human peripheral blood mononuclear cells, we found critical regulators and their epigenetic regulations for the differentiations of CD4 T cells, CD8 T cells, B cells and monocytes. Interestingly, TENET+ predicted LRRFIP1 and ZBTB16 as top regulators of CD4 and CD8 T cells which were not predicted in a motif-based tool SCENIC. In sum, TENET+ is a tool predicting epigenetic gene regulatory programs in unbiased way, suggesting that novel epigenetic regulations can be identified by TENET+.
2022-07-05 / 16:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Reconstruction of gene regulatory networks (GRNs) is a powerful approach to capture a prioritized gene set controlling cellular processes. In our previous study, we developed TENET a GRN reconstructor from single cell RNA sequencing (scRNAseq). TENET has a superior capability to identify key regulators compared with other algorithms. However, accurate inference of gene regulation is still challenging. Here, we suggest an integrative strategy called TENET+ by combining single cell transcriptome and chromatin accessibility data. By applying TENET+ to a paired scRNAseq and scATACseq dataset of human peripheral blood mononuclear cells, we found critical regulators and their epigenetic regulations for the differentiations of CD4 T cells, CD8 T cells, B cells and monocytes. Interestingly, TENET+ predicted LRRFIP1 and ZBTB16 as top regulators of CD4 and CD8 T cells which were not predicted in a motif-based tool SCENIC. In sum, TENET+ is a tool predicting epigenetic gene regulatory programs in unbiased way, suggesting that novel epigenetic regulations can be identified by TENET+.
2022-07-05 / 16:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Reconstruction of gene regulatory networks (GRNs) is a powerful approach to capture a prioritized gene set controlling cellular processes. In our previous study, we developed TENET a GRN reconstructor from single cell RNA sequencing (scRNAseq). TENET has a superior capability to identify key regulators compared with other algorithms. However, accurate inference of gene regulation is still challenging. Here, we suggest an integrative strategy called TENET+ by combining single cell transcriptome and chromatin accessibility data. By applying TENET+ to a paired scRNAseq and scATACseq dataset of human peripheral blood mononuclear cells, we found critical regulators and their epigenetic regulations for the differentiations of CD4 T cells, CD8 T cells, B cells and monocytes. Interestingly, TENET+ predicted LRRFIP1 and ZBTB16 as top regulators of CD4 and CD8 T cells which were not predicted in a motif-based tool SCENIC. In sum, TENET+ is a tool predicting epigenetic gene regulatory programs in unbiased way, suggesting that novel epigenetic regulations can be identified by TENET+.
2022-07-05 / 16:00 ~ 17:00
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by ()
The degree-shifting action on the cohomology of locally symmetric spaces, which has its origins in the representation theory of real reductive groups, enjoys a surprising connection with arithmetic, as expected by the so-called motivic action conjectures of A. Venkatesh. Although these conjectures are expected to hold in great generality, there is a disparity between the algebraic and non-algebraic locally symmetric spaces. We will discuss the nature of the degree-shifting action in both cases (For those who cannot attend the in-person seminar, we will also stream the seminar talk via Zoom. Please contact Wansu Kim for the Zoom connection details.)
2022-07-06 / 16:30 ~ 18:00
학과 세미나/콜로퀴엄 - 계산수학 세미나: 인쇄
by 최재규()
Recently, mapping a signal/image into a low rank Hankel/Toeplitz matrix has become an emerging alternative to the traditional sparse regularization, due to its ability to alleviate the basis mismatch between the true support in the continuous domain and the discrete grid. In this talk, we introduce a novel structured low rank matrix framework to restore piecewise smooth functions. Inspired by the total generalized variation to use sparse higher order derivatives, we derive that the Fourier samples of higher order derivatives satisfy an annihilation relation, resulting in a low rank multi-fold Hankel matrix. We further observe that the SVD of a low rank Hankel matrix corresponds to a tight wavelet frame system which can represent the image with sparse coefficients. Based on this observation, we also propose a wavelet frame analysis approach based continuous domain regularization model for the piecewise smooth image restoration.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download