|
2022-05-17 / 16:00 ~ 17:00
|
학과 세미나/콜로퀴엄 - 정수론: Arithmetic of character variety of reductive groups |
|
|
by 남경현(University of Queensland, Australia)
|
Counting the number of points on a variety is a historical method for investigating the variety, for example, in the Weil conjecture. Nowadays, it is known that the point count helps us determine the E-polynomial. This E-polynomial, in turn, gives arithmetic-geometric information on the variety such as the dimension, the number of irreducible components and Euler characteristic.
In this talk, we will consider a specific type of variety, the character variety associated to the fundamental group of a surface. In short, we will discuss this variety for a punctured surface, with regular semisimple or regular unipotent monodromy at the punctures. This variety plays a crucial role in diverse areas of mathematics, including non-abelian Hodge theory, geometric Langlands program and mathematical physics. The complex representation theory of finite groups will be used to compute the number of points on such a variety.
|
|
|