Tuesday, August 9, 2022

<< >>  
2022. 7
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2022. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2022. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2022-08-16 / 13:00 ~ 14:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 권봉석()
Various plasma phenomena will be discussed using a fundamentalfluid model for plasmas, called the Euler-Poisson system. These include plasma sheaths and plasma soliton. First we will briefly introduce recent results on the stability of plasma sheath solutions, and the quasi-neutral limit of the Euler-Poisson system in the presence of plasma sheaths. Another example of ourinterest is plasma solitary waves, for which we discuss existence, stability, and the time-asymptotic behavior. To study the nonlinear stability of solitary waves, the global existence of smooth solutions must be established, which is completelyopen. As a negative answer for global existence, we look into the finite-time blow-up results for the Euler-Poisson system, and discuss the related open questions.
2022-08-16 / 14:00 ~ 15:00
SAARC 세미나 - SAARC 세미나: 인쇄
by (경기대학교)
In this talk, we propose the Landau-Lifshitz type system augmented with Chern-Simons gauge terms, which can be considered as the geometric analog of so-called the Chern-Simons-Schrodinger equations. We first derive its self-dual equations through the energy minimization so that we can provide $N$-equivariant solitons. We next deliver basic ideas of constructing $N$-equivariant solitary waves for non-self-dual cases and investigating their qualitative properties.
2022-08-16 / 15:30 ~ 17:30
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
It has been told that deep learning is a black box. The universal approximation theorem was the key theorem which makes the stories going on. On the other hand, in the perspective of the function classes generated by deep neural network, it can be analyzed by in terms of the choice of the various activation functions. The piecewise linear functions, fourier series, wavelets and many other classes would be considered for the purpose of the tasks such as classification, prediction and generation models which heavily depend on the data sets. It might be a challenging problem for mathematicians to develop a new optimization theory depending on the various function classes.
2022-08-16 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
Abstract: Let S:=S(a_{1}, ..., a_{n}) \subset P^{n} be a smooth rational normal n-fold scroll. Then the dimension of the projective automophism group {rm Aut}(S,``VecP^ {N} ) of S is \dim(Aut(S, P^{N})) = 2+ \frac{n(n+1)}{2}-(n+1)(N-n+1)+2 sum _{ n} ^{ j=1} ja_j + #{(i,j)|i
2022-08-12 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 이동현(포스텍)
Global wellposedness and asymptotic stability of the Boltzmann equation with specular reflection boundary condition in 3D non-convex domain is an outstanding open problem in kinetic theory. Motivated by Guo’s L^2-L^\infty theory, the problem was completely solved for general C^3 domain, but it is still widely open for general non-convex domains. The problem was solved in cylindrical domain with analytic non-convex cross section. Generalizing previous work, we study the problem in general solid torus, a solid torus with general analytic convex cross-section. This is the first results for the domain which contains essentially 3D non-convex structure. This is a joint work with Chanwoo Kim and Gyeonghun Ko.
2022-08-10 / 14:30 ~ 15:30
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by ()
The past decade has witnessed a great advancement on the Tate conjecture for varieties with Hodge number $h^{2,0} = 1$. Charles, Madapusi-Pera and Maulik completely settled the conjecture for K3 surfaces over finite fields, and Moonen proved the Mumford-Tate (and hence also Tate) conjecture for more or less arbitrary $h^{2,0} = 1$ varieties in characteristic $0$. In this talk, I will explain that the Tate conjecture is true for mod $p$ reductions of complex projective $h^{2,0} = 1$ varieties when $p \gg 0$, under a mild assumption on moduli. By refining this general result, we prove that in characteristic $p \geq 5$ the BSD conjecture holds for a height $1$ elliptic curve $E$ over a function field of genus 1, as long as $E$ is subject to the generic condition that all singular fibers in its minimal compactification are irreducible. We also prove the Tate conjecture over finite fields for a class of surfaces of general type and a class of Fano varieties. The overall philosophy is that the connection between the Tate conjecture over finite fields and the Lefschetz $(1,1)$-theorem over $C$ is very robust for $h^{2,0} = 1$ varieties, and works well beyond the hyperk\”{a}hler world. This is based on joint work with Paul Hamacher and Xiaolei Zhao.
2022-08-10 / 10:30 ~ 11:30
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by ()
The past decade has witnessed a great advancement on the Tate conjecture for varieties with Hodge number $h^{2,0} = 1$. Charles, Madapusi-Pera and Maulik completely settled the conjecture for K3 surfaces over finite fields, and Moonen proved the Mumford-Tate (and hence also Tate) conjecture for more or less arbitrary $h^{2,0} = 1$ varieties in characteristic $0$. In this talk, I will explain that the Tate conjecture is true for mod $p$ reductions of complex projective $h^{2,0} = 1$ varieties when $p \gg 0$, under a mild assumption on moduli. By refining this general result, we prove that in characteristic $p \geq 5$ the BSD conjecture holds for a height $1$ elliptic curve $E$ over a function field of genus 1, as long as $E$ is subject to the generic condition that all singular fibers in its minimal compactification are irreducible. We also prove the Tate conjecture over finite fields for a class of surfaces of general type and a class of Fano varieties. The overall philosophy is that the connection between the Tate conjecture over finite fields and the Lefschetz $(1,1)$-theorem over $C$ is very robust for $h^{2,0} = 1$ varieties, and works well beyond the hyperk\”{a}hler world. This is based on joint work with Paul Hamacher and Xiaolei Zhao.
2022-08-16 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Testing first-order definable properties on bounded degree graphs 인쇄
by Noleen Köhler(CNRS, LAMSADE)
Property testers are probabilistic algorithms aiming to solve a decision problem efficiently in the context of big-data. A property tester for a property P has to decide (with high probability correctly) whether a given input graph has property P or is far from having property P while having local access to the graph. We study property testing of properties that are definable in first-order logic (FO) in the bounded-degree model. We show that any FO property that is defined by a formula with quantifier prefix ∃*∀* is testable, while there exists an FO property that is expressible by a formula with quantifier prefix ∀*∃* that is not testable. In the dense graph model, a similar picture is long known (Alon, Fischer, Krivelevich, Szegedy, Combinatorica 2000), despite the very different nature of the two models. In particular, we obtain our lower bound by a first-order formula that defines a class of bounded-degree expanders, based on zig-zag products of graphs. This is joint work with Isolde Adler and Pan Peng.
2022-08-09 / 14:00 ~ 16:00
학과 세미나/콜로퀴엄 - 기타: (Undergrad student seminar) Basic properties and structures of Riemann surfaces via Čech cohomology 인쇄
by 김재홍(KAIST)
(학사과정 학생 개별연구 결과 발표 세미나) Čech cohomology is the direct limit of cohomology taken from the cochain complex obtained by an open cover and a sheaf. In this talk we will derive some important results about Riemann surfaces such as Riemann-Roch theorem and Serre Duality, regarding low level Čech cohomologies. We will also discuss some basic structure and properties of Riemann surfaces using these results, focusing on genus and the embeddings.
2022-08-09 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Directed flow-augmentation 인쇄
by 김은정(CNRS, LAMSADE)
We show a flow-augmentation algorithm in directed graphs: There exists a polynomial-time algorithm that, given a directed graph G, two integers $s,t\in V(G)$, and an integer $k$, adds (randomly) to $G$ a number of arcs such that for every minimal st-cut $Z$ in $G$ of size at most $k$, with probability $2^{−\operatorname{poly}(k)}$ the set $Z$ becomes a minimum $st$-cut in the resulting graph. The directed flow-augmentation tool allows us to prove fixed-parameter tractability of a number of problems parameterized by the cardinality of the deletion set, whose parameterized complexity status was repeatedly posed as open problems: (1) Chain SAT, defined by Chitnis, Egri, and Marx [ESA'13, Algorithmica'17], (2) a number of weighted variants of classic directed cut problems, such as Weighted st-Cut, Weighted Directed Feedback Vertex Set, or Weighted Almost 2-SAT. By proving that Chain SAT is FPT, we confirm a conjecture of Chitnis, Egri, and Marx that, for any graph H, if the List H-Coloring problem is polynomial-time solvable, then the corresponding vertex-deletion problem is fixed-parameter tractable. Joint work with Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download