Monday, January 2, 2023

<< >>  
2022. 12
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2023. 1
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2023. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
2023-01-06 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by ()
The converse theorem for automorphic forms has a long history beginning with the work of Hecke (1936) and a work of Weil (1967): relating the automorphy relations satisfied by classical modular forms to analytic properties of their L-functions and the L-functions twisted by Dirichlet characters. The classical converse theorems were reformulated and generalised in the setting of automorphic representations for GL(2) by Jacquet and Langlands (1970). Since then, the converse theorem has been a cornerstone of the theory of automorphic representations. Venkatesh (2002), in his thesis, gave new proof of the classical converse theorem for modular forms of level 1 in the context of Langlands’ “Beyond Endoscopy”. In this talk, we extend Venkatesh’s proof of the converse theorem to forms of arbitrary levels and characters with the gamma factors of the Selberg class type. This is joint work with Andrew R. Booker and Michael Farmer.
2023-01-03 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Approximating TSP walks in subcubic graphs 인쇄
by 유영호(Texas A&M University)
The Graphic Travelling Salesman Problem is the problem of finding a spanning closed walk (a TSP walk) of minimum length in a given connected graph. The special case of the Graphic TSP on subcubic graphs has been studied extensively due to their worst-case behaviour in the famous $\frac{4}{3}$-integrality-gap conjecture on the "subtour elimination" linear programming relaxation of the Metric TSP. We prove that every simple 2-connected subcubic graph on $n$ vertices with $n_2$ vertices of degree 2 has a TSP walk of length at most $\frac{5n+n_2}{4}-1$, confirming a conjecture of Dvořák, Král', and Mohar. This bound is best possible and we characterize the extremal subcubic examples meeting this bound. We also give a quadratic time combinatorial algorithm to find such a TSP walk. In particular, we obtain a $\frac{5}{4}$-approximation algorithm for the Graphic TSP on cubic graphs. Joint work with Michael Wigal and Xingxing Yu.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download