In mathematics, every mathematical object is generated along with a set of processes setting up boundaries and relationships as recently emphasized in Prof. June Huh's public lecture (July 13, 2022), commemorating his Fields Medal award. These days we live in the era of the 4th industrial revolution in which the advent of “the era of expanding technological super-gap on a global scale” is expected. More than ever including the era of Gauss (German: Gauß; 30 April 1777 – 23 February 1855) when he emphasized, "Mathematics is the queen of sciences, often condescending to render service to other sciences, but in all relations, she is entitled to the first rank," the role of mathematics is apparently getting much more important as time goes by in the era of the digital revolution. The importance of raising awareness of this cannot be overemphasized.
In this talk according the above, three concrete examples are introduced to show how mathematics can practically contribute to the improvement of the human digital civilization in view of the processes setting up boundaries and relationships: 1) mathematics and "the smallest object" in physics, 2) first-principles(ab initio) in physics and mathematics, and 3) building up and utilizing our own first-principles allowing to flexibly cross boundaries between academic fields, which often makes it much easier for us to deal with various important problems. As for the practical examples, some of our recent works are briefly introduced as well, including mathematical conceptualizaiton of metaverse, construction of "physical system for linguistic data" with its ab initio-based utilization, etc; we might as well say that a sort of "Academic Continuation (analogous to analytic continuation)" is applied in each case. From this talk, we learn to boldly seek out useful mathematical connections crossing boundaries as above, more enriching the digital revolution; various academic/theoretical fields considered different from each other actually share an amount of common/similar mathematical structures.
|