Tuesday, November 15, 2022

<< >>  
2022. 10
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2022. 11
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
2022. 12
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2022-11-18 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 강상우()
The development and analysis of efficient methods and techniques for solving an inverse scattering problem are of great interest due to their potential in various applications, such as nondestructive testing, biomedical imaging, radar imaging, and structural imaging, among others. Sampling-type imaging methods allow us to non-iteratively retrieve the support of (possibly multiconnected) targets with low computational cost, assuming no a priori information about the targets. A sampling method tests a region of interest with its associated indicator function; the indicator function blows up if a test location is in support of inhomogeneities. Even though the sampling methods show promising results in ideal (multistatic, full-aperture, sufficiently many receivers) measurement configuration, one can frequently encounter limited measurement cases in practical applications. This presentation introduces the sampling-type imaging methods in two-dimensional limited-aperture, monostatic, and bistatic measurement cases. We identify the asymptotic structure of imaging methods to explore the applicability and intrinsic properties.
2022-11-22 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: A proof of the Elliott-Rödl conjecture on hypertrees in Steiner triple systems 인쇄
by 임성혁(KAIST / IBS 극단조합및확률그룹)
A linear $3$-graph is called a (3-)hypertree if there exists exactly one path between each pair of two distinct vertices.  A linear $3$-graph is called a Steiner triple system if each pair of two distinct vertices belong to a unique edge. A simple greedy algorithm shows that every $n$-vertex Steiner triple system $G$ contains all hypertrees $T$ of order at most $\frac{n+3}{2}$. On the other hand, it is not immediately clear whether one can always find larger hypertrees in $G$. In 2011, Goodall and de Mier proved that a Steiner triple system $G$ contains at least one spanning tree. However, one cannot expect the Steiner triple system to contain all possible spanning trees, as there are many Steiner triple systems that avoid numerous spanning trees as subgraphs. Hence it is natural to wonder how much one can improve the bound from the greedy algorithm. Indeed, Elliott and Rödl conjectured that an $n$-vertex Steiner triple system $G$ contains all hypertrees of order at most $(1-o(1))n$. We prove the conjecture by Elliott and Rödl. This is joint work with Jaehoon Kim, Joonkyung Lee, and Abhishek Methuku.
2022-11-15 / 11:00 ~ 12:00
IBS-KAIST 세미나 - 대수기하학: Coregularity of Fano varieties 인쇄
by Joaquín Moraga(UCLA)
In this talk, we will introduce the absolute coregularity of Fano varieties. The coregularity measures the singularities of the anti-pluricanonical sections. Philosophically, most Fano varieties have coregularity 0. In the talk, we will explain some theorems that support this philosophy. We will show that a Fano variety of coregularity 0 admits a non-trivial section in |-2K_X|, independently of the dimension of X. This is joint work with Fernando Figueroa, Stefano Filipazzo, and Junyao Peng. * ZOOM information will not be provided. Please send an email to Jinhyung Park if you are interested in.
2022-11-18 / 11:00 ~ 12:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
TBA
2022-11-15 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Excluding single-crossing matching minors in bipartite graphs 인쇄
by Sebastian Wiederrecht(IBS 이산수학그룹)
By a seminal result of Valiant, computing the permanent of (0, 1)-matrices is, in general, #P-hard. In 1913 Pólya asked for which (0, 1)-matrices A it is possible to change some signs such that the permanent of A equals the determinant of the resulting matrix. In 1975, Little showed these matrices to be exactly the biadjacency matrices of bipartite graphs excluding $K_{3,3}$ as a matching minor. This was turned into a polynomial time algorithm by McCuaig, Robertson, Seymour, and Thomas in 1999. However, the relation between the exclusion of some matching minor in a bipartite graph and the tractability of the permanent extends beyond K3,3. Recently it was shown that the exclusion of any planar bipartite graph as a matching minor yields a class of bipartite graphs on which the permanent of the corresponding (0, 1)-matrices can be computed efficiently. In this paper we unify the two results above into a single, more general result in the style of the celebrated structure theorem for single-crossing minor-free graphs. We identify a class of bipartite graphs strictly generalising planar bipartite graphs and $K_{3,3}$ which includes infinitely many non-Pfaffian graphs. The exclusion of any member of this class as a matching minor yields a structure that allows for the efficient evaluation of the permanent. Moreover, we show that the evaluation of the permanent remains #P-hard on bipartite graphs which exclude $K_{5,5}$ as a matching minor. This establishes a first computational lower bound for the problem of counting perfect matchings on matching minor closed classes. As another application of our structure theorem, we obtain a strict generalisation of the algorithm for the k-vertex disjoint directed paths problem on digraphs of bounded directed treewidth. This is joint work with Archontia Giannopoulou and Dimitrios Thilikos.
2022-11-22 / 17:00 ~ 18:00
학과 세미나/콜로퀴엄 - Mathematics & Beyond Seminar: 인쇄
by 최찬오 세무사(법무법인 태평양)

2022-11-15 / 17:00 ~ 18:00
학과 세미나/콜로퀴엄 - Mathematics & Beyond Seminar: 인쇄
by 최영상 상무(삼성전자 종합기술원)

2022-11-17 / 11:50 ~ 12:30
대학원생 세미나 - 대학원생 세미나: Hyperbolicity in Groups 인쇄
by 김준석(KAIST)
Geometric group theory concerns about how to see geometric properties in finitely generated groups. Defining Cayley graph of a finitely generated group with respect to finite generating set gives a perspective to describe geometric properties of finitely generated groups. Once we get a geometric perspective, we can classify finitely generated groups via quasi-isometry, since two Cayley graphs are quasi-isometric. In this talk, we will explain some basic notions appeared in geometric group theory (for example, quasi-isometry, hyperbolic groups, Švarc–Milnor lemma) and some theorems related to (relative) hyperbolicity of groups.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download