Friday, March 3, 2023

<< >>  
2023. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
2023. 3
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2023. 4
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
2023-03-10 / 14:00 ~ 16:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
A key goal of synthetic biology is to establish functional biochemical modules with network-independent properties. Antithetic integral feedback (AIF) is a recently developed control module in which two control species perfectly annihilate each other’s biological activity. The AIF module confers robust perfect adaptation to the steady-state average level of a controlled intracellular component when subjected to sustained perturbations. Recent work has suggested that such robustness comes at the unavoidable price of increased stochastic fluctuations around average levels. We present theoretical results that support and quantify this trade-off for the commonly analyzed AIF variant in the idealized limit with perfect annihilation. However, we also show that this trade-off is a singular limit of the control module: Even minute deviations from perfect adaptation allow systems to achieve effective noise suppression as long as cells can pay the corresponding energetic cost. We further show that a variant of the AIF control module can achieve significant noise suppression even in the idealized limit with perfect adaptation. This atypical configuration may thus be preferable in synthetic biology applications.
2023-03-03 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 최우진(NIMS 방문교수(카이스트 명예교수))
This talk reviews two notable papers in self-supervised graphical neural networks; they are "Graph contrastive learning with augmentations" presented at NeurIPS 2020 and "Contrastive multi-view representation learning on graphs" presented at ICML 2020. This will be an introduction of self-supervised graphical neural networks that has emerged as one of the hottest research fields in artificial intelligence, which requires mathematical methodology across all fields of mathematics, including graph theory, algebra, topology, analysis, and geometry.
2023-03-07 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Parameterized algorithms for the planar disjoint paths problem 인쇄
by 오은진(POSTECH)
Given an undirected planar graph $G$ with $n$ vertices and a set $T$ of $k$ pairs $(s_i,t_i)_{i=1}^k$ of vertices, the goal of the planar disjoint paths problem is to find a set $\mathcal P$ of $k$ pairwise vertex-disjoint paths connecting $s_i$ and $t_i$ for all indices $i\in\{1,\ldots,k\}$. This problem has been studied extensively due to its numerous applications such as VLSI layout and circuit routing. However, this problem is NP-complete even for grid graphs. This motivates the study of this problem from the viewpoint of parameterized algorithms. In this talk, I will present a $2^{O(k^2)}n$-time algorithm for the planar disjoint paths problem. This improves the two previously best-known algorithms: $2^{2^{O(k)}}n$-time algorithm [Discrete Applied Mathematics 1995] and $2^{O(k^2)}n^6$-time algorithm [STOC 2020]. This is joint work with Kyungjin Cho and Seunghyeok Oh.
2023-03-10 / 10:00 ~ 11:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Cooperation means that one individual pays a cost for another to receive a benefit. Cooperation can be at variance with natural selection. Why should you help competitors? Yet cooperation is abundant in nature and is important component of evolutionary innovation. Cooperation can be seen as the master architect of evolution and as the third fundamental principle of evolution beside mutation and selection. I will present five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, spatial selection, group selection and kin selection. Global cooperation and the cooperation with future generations is necessary to ensure the survival of our species. Further reading: Nowak MA (2006). Evolutionary Dynamics. Harvard University Press Nowak MA & Highfield R (2011) SuperCooperators. Simon & Schuster. Hauser OP, Rand DG, Peysakhovich A & Nowak MA (2014). Cooperating with the future. Nature 511: 220-223 Hilbe C, Šimsa Š, Chatterjee K & Nowak MA (2018). Evolution of cooperation in stochastic games. Nature 559: 246-249 Hauser OP, Hilbe C, Chatterjee K & Nowak MA (2019). Social dilemmas among unequals. Nature 572: 524-527
2023-03-03 / 11:00 ~ 12:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
1. The “temporal information code” of insulin action: a bottom-up approach One of the essential elements of signaling networks is to encode information from a wide variety of inputs into a limited set of molecules. We have proposed a “temporal information code” that regulates a variety of physiological functions by encoding input information in temporal patterns of molecular activity, and based on this concept, we are analyzing biological homeostasis by insulin signaling. Taking blood insulin as an example, we will explain how the temporal information of blood insulin is selectively decoded by downstream networks. 2. Transomics of insulin action: a top-down approach In order to obtain a complete picture of insulin action, we performed transomics measurements integrating metabolomics and transcriptomics, and found that metabolism is regulated by allosteric regulation in the liver of normal mice and by compensatory gene expression in the liver of obese mice. (Top-down approach). I will talk about approach the principle of homeostasis of living organisms by temporal patterns, using the analysis of systems biology of insulin action using two different approaches.
2023-03-03 / 14:00 ~ 16:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Cellular dynamics and emerging biological function are governed by patterns of gene expression arising from networks of interacting genes. Inferring these interactions from data is a notoriously difficult inverse problem that is central to systems biology. The majority of existing network inference methods work at the population level and construct a static representations of gene regulatory networks; they do not naturally allow for inference of differential regulation across a heterogeneous cell population. Building upon recent dynamical inference methods that model single cell dynamics using Markov processes, we propose locaTE, an information-theoretic approach which employs a localised transfer entropy to infer cell-specific, causal gene regulatory networks. LocaTE uses high-resolution estimates of dynamics and geometry of the cellular gene expression manifold to inform inference of regulatory interactions. We find that this approach is generally superior to using static inference methods, often by a significant margin. We demonstrate that factor analysis can give detailed insights into the inferred cell-specific GRNs. In application to two experimental datasets, we recover key transcription factors and regulatory interactions that drive mouse primitive endoderm formation and pancreatic development. For both simulated and experimental data, locaTE provides a powerful, efficient and scalable network inference method that allows us to distil cell-specific networks from single cell data.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download