Saturday, March 4, 2023

<< >>  
2023. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
2023. 3
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2023. 4
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
2023-03-10 / 14:00 ~ 16:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
A key goal of synthetic biology is to establish functional biochemical modules with network-independent properties. Antithetic integral feedback (AIF) is a recently developed control module in which two control species perfectly annihilate each other’s biological activity. The AIF module confers robust perfect adaptation to the steady-state average level of a controlled intracellular component when subjected to sustained perturbations. Recent work has suggested that such robustness comes at the unavoidable price of increased stochastic fluctuations around average levels. We present theoretical results that support and quantify this trade-off for the commonly analyzed AIF variant in the idealized limit with perfect annihilation. However, we also show that this trade-off is a singular limit of the control module: Even minute deviations from perfect adaptation allow systems to achieve effective noise suppression as long as cells can pay the corresponding energetic cost. We further show that a variant of the AIF control module can achieve significant noise suppression even in the idealized limit with perfect adaptation. This atypical configuration may thus be preferable in synthetic biology applications.
2023-03-07 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Parameterized algorithms for the planar disjoint paths problem 인쇄
by 오은진(POSTECH)
Given an undirected planar graph $G$ with $n$ vertices and a set $T$ of $k$ pairs $(s_i,t_i)_{i=1}^k$ of vertices, the goal of the planar disjoint paths problem is to find a set $\mathcal P$ of $k$ pairwise vertex-disjoint paths connecting $s_i$ and $t_i$ for all indices $i\in\{1,\ldots,k\}$. This problem has been studied extensively due to its numerous applications such as VLSI layout and circuit routing. However, this problem is NP-complete even for grid graphs. This motivates the study of this problem from the viewpoint of parameterized algorithms. In this talk, I will present a $2^{O(k^2)}n$-time algorithm for the planar disjoint paths problem. This improves the two previously best-known algorithms: $2^{2^{O(k)}}n$-time algorithm [Discrete Applied Mathematics 1995] and $2^{O(k^2)}n^6$-time algorithm [STOC 2020]. This is joint work with Kyungjin Cho and Seunghyeok Oh.
2023-03-10 / 10:00 ~ 11:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Cooperation means that one individual pays a cost for another to receive a benefit. Cooperation can be at variance with natural selection. Why should you help competitors? Yet cooperation is abundant in nature and is important component of evolutionary innovation. Cooperation can be seen as the master architect of evolution and as the third fundamental principle of evolution beside mutation and selection. I will present five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, spatial selection, group selection and kin selection. Global cooperation and the cooperation with future generations is necessary to ensure the survival of our species. Further reading: Nowak MA (2006). Evolutionary Dynamics. Harvard University Press Nowak MA & Highfield R (2011) SuperCooperators. Simon & Schuster. Hauser OP, Rand DG, Peysakhovich A & Nowak MA (2014). Cooperating with the future. Nature 511: 220-223 Hilbe C, Šimsa Š, Chatterjee K & Nowak MA (2018). Evolution of cooperation in stochastic games. Nature 559: 246-249 Hauser OP, Hilbe C, Chatterjee K & Nowak MA (2019). Social dilemmas among unequals. Nature 572: 524-527
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download