Monday, October 21, 2024

<< >>  
2024. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
2024. 10
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2024. 11
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
2024-10-28 / 16:00 ~ 17:00
편미분방정식 통합연구실 세미나 - 편미분방정식: 인쇄
by ()
In the N-body problem, choreographies are periodic solutions where N equal masses follow each other along a closed curve. Each mass takes periodically the position of the next after a fixed interval of time. In 1993, Moore discovered numerically a choreography for N = 3 in the shape of an eight. The proof of its existence is established in 2000 by Chenciner and Montgomery. In the same year, Marchal published his work on the most symmetric family of spatial periodic orbits, bifurcating from the Lagrange triangle by continuation with respect to the period. This continuation class is referred to as the P12 family. Noting that the figure eight possesses the same twelve symmetries as the P12 family, the author claimed that it ought to belong to P12. This is known as Marchal’s conjecture. In this talk, we present a constructive proof of Marchal’s conjecture. We formulate a one parameter family of functional equations, whose zeros correspond to periodic solutions satisfying the symmetries of P12; the frequency of a rotating frame is used as the continuation parameter. The goal is then to prove the uniform contraction of a mapping, in a neighbourhood of an approximation of the family of choreographies starting at the Lagrange triangle and ending at the figure eight. The contraction is set in the Banach space of rapidly decaying Fourier-Chebyshev series coefficients. While the Fourier basis is employed to model the temporal periodicity of the solutions, the Chebyshev basis captures their parameter dependence. In this framework, we obtain a high-order approximation of the family as a finite number of Fourier polynomials, where each coefficient is itself given by a finite number of Chebyshev polynomials. The contraction argument hinges on the local isolation of each individual choreography in the family. However, symmetry breaking bifurcations occur at the Lagrange triangle and the figure eight. At the figure eight, there is a translation invariance in the normal direction to the eight. We explore how the conservation of the linear momentum in this direction can be leveraged to impose a zero average value in time for the choreographies. Lastly, at the Lagrange triangle, its (planar) homothetic family meets the (off-plane) P12 family. We discuss how a blow-up (as in “zoom-in”) method provides an auxiliary problem which only retains the desired P12 family.
2024-10-28 / 14:30 ~ 15:30
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
We'll present the beautiful proof of Kemeny on Voisin's theorem using a rank 2 bundle on a K3 surface.
2024-10-24 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
We'll present a proof of the theorem of Green and Lazarsfeld on projective normality using the bend and break trick of Mori (an argument due to Mukai and Sakai).
2024-10-21 / 17:00 ~ 18:00
편미분방정식 통합연구실 세미나 - 편미분방정식: 인쇄
by ()
We examine the dynamics of short-range interacting Bose gases with varying diluteness and interaction strength. Using a combination of mean-field and semiclassical methods, we show that, for large numbers of particles, the system’s local mass, momentum, and energy densities can be approximated by solutions to the compressible Euler system (with pressure P = gρ2 ) up to a blow-up time. In the hard-core limit, two key results are presented: the internal energy is derived solely from the many-body kinetic energy, and the coupling constant g = 4πc0 where c0 the electrostatic capacity of the interaction potential. The talk is based on our recent work arXiv:2409.14812v1. This is joint work with Shunlin Shen and Zhifei Zhang. The talk will be delivered in English and is meant for the general audience.
2024-10-23 / 16:30 ~ 18:00
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
Resonance varieties are algebro-geometric objects that emerged from the geometric group theory. They are naturally associated to vector subspaces in second exterior powers and carry natural scheme structures that can be non-reduced. In algebraic geometry, they made an unexpected appearance in connection with syzygies of canonical curves. In this talk, based on works with G. Farkas, Y. Kim, C. Raicu, A. Suciu, and J. Weyman I report on some recent results concerning the geometry of resonance schemes in the vector bundle setup.
2024-10-22 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Permutations, patterns, and twin-width 인쇄
by Colin Geniet(IBS 이산수학 그룹)
This talk will first introduce combinatorics on permutations and patterns, presenting the basic notions and some fundamental results: the Marcus-Tardos theorem which bounds the density of matrices avoiding a given pattern, and the Guillemot-Marx algorithm for pattern detection using the notion now known as twin-width. I will then present a decomposition result: permutations avoiding a pattern factor into bounded products of separable permutations. This can be rephrased in terms of twin-width: permutation with bounded twin-width are build from a bounded product of permutations of twin-width 0. Comparable results on graph encodings follow from this factorisation. This is joint work with Édouard Bonnet, Romain Bourneuf, and Stéphan Thomassé.
2024-10-24 / 10:30 ~ 11:30
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
The lecture series gives a view on computational methods and their some applications to existence and classfication problems. In the first lectures I will introduce Groebner basis and their basic applications in commutative algebra such as computing kernel and images of morphism between finitely presented modules over polynomial rings. As a theoretical application of Groebner basis I will give Petri's analysis of the equations of a canonical curve. The second topic will be Computer aided existence and unirationality proofs of algebraic varieties and their moduli spaces. In case of curves liaison theory is needed, which will be developed. For existence proofs random searches over finite fields is a technique that has not been exploited very much. I will illustrate this technique in a number of examples, in particular for the construction of certain surfaces. Classification of non-minimal surfaces uses adjunction theory. We will discuss this from a computational point of view.
2024-10-22 / 10:30 ~ 11:30
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
The lecture series gives a view on computational methods and their some applications to existence and classfication problems. In the first lectures I will introduce Groebner basis and their basic applications in commutative algebra such as computing kernel and images of morphism between finitely presented modules over polynomial rings. As a theoretical application of Groebner basis I will give Petri's analysis of the equations of a canonical curve. The second topic will be Computer aided existence and unirationality proofs of algebraic varieties and their moduli spaces. In case of curves liaison theory is needed, which will be developed. For existence proofs random searches over finite fields is a technique that has not been exploited very much. I will illustrate this technique in a number of examples, in particular for the construction of certain surfaces. Classification of non-minimal surfaces uses adjunction theory. We will discuss this from a computational point of view.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download