Wednesday, January 11, 2023

<< >>  
2022. 12
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2023. 1
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2023. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
2023-01-18 / 10:30 ~ 11:30
SAARC 세미나 - SAARC 세미나: 인쇄
by 박지운()
The Discrete Gaussian model is a type of integer-valued random height function. In the 2D setting, it exhibits a phase transition between a localised phase and a delocalised phase. This phenomenon is also called the Kosterlitz-Thouless phase transition, whose terminology originates from its dual counterpart, the planar XY model. Motivation for studying the Discrete Gaussian model is multifold. Due to its duality relations with a number of 2D mathematical physics models, such as the XY model or the Coulomb gas, studies on integer-value height functions are capable of proving a number of conjectures usually not accessible using classical methods. Other discrete height functions also have dualities with a number of different interesting models, so it will be of vast interest to develop a general framework that deals with discrete height functions. Also, discrete height functions are considered to be appropriate test cases for recently developed techniques from probability theory. In this talk, we discuss a particular method called the renormalisation group method, which is believed to serve as a general framework for studying random fields. We also discuss briefly how the renormalisation group method can be used to prove that the scaling limit of the 2D Discrete Gaussian model is a 2D Gaussian free field.
2023-01-17 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 정수론: Prismatic F-crystals and applications to p-adic Galois representations 인쇄
by 문용석()
Prismatic cohomology, which is recently developed by Bhatt and Scholze, is a p-adic cohomology theory unifying etale, de Rham, and crystalline cohomology. In this series of two talks, we will discuss its central object of study called prismatic F-crystals, and some applications to studying p-adic Galois representations. The first part will be mainly devoted to explaining motivational background on the topic. Then we will discuss the relation between prismatic F-crystals and crystalline local systems on p-adic formal scheme, and talk about applications on purity of crystalline local system and on crystalline deformation ring. If time permits, we will also discuss recent work in progress on log prismatic F-crystals and semistable local systems. A part of the results is based on joint work with Du, Liu, Shimizu.
2023-01-16 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 정수론: Prismatic F-crystals and applications to p-adic Galois representations 인쇄
by 문용석()
Prismatic cohomology, which is recently developed by Bhatt and Scholze, is a p-adic cohomology theory unifying etale, de Rham, and crystalline cohomology. In this series of two talks, we will discuss its central object of study called prismatic F-crystals, and some applications to studying p-adic Galois representations. The first part will be mainly devoted to explaining motivational background on the topic. Then we will discuss the relation between prismatic F-crystals and crystalline local systems on p-adic formal scheme, and talk about applications on purity of crystalline local system and on crystalline deformation ring. If time permits, we will also discuss recent work in progress on log prismatic F-crystals and semistable local systems. A part of the results is based on joint work with Du, Liu, Shimizu.
2023-01-13 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 정수론: Connected components of affine Deligne-Lusztig varieties 인쇄
by 임동규()
Affine Deligne-Lusztig varieties show up naturally in the study of Shimura varieties, Rapoport-Zink spaces, and moduli spaces of local shtukas. Among various questions on its geometric properties, the question on the connected components turns out to be a fairly important problem. For example, Kisin, in his proof of the Langlands-Rapoport conjecture (in a weak sense) for abelian type Shimura variety with the hyperspecial level structure, crucially used the description of the set of connected components. Since then, many authors have answered this question in various restricted cases. I will first discuss what is the conjectural description of the connected components and related previous works. Then, I will explain my new result (joint work with Ian Gleason and Yujie Xu) which finishes the question in the mixed characteristic case and, if time permits, new ingredients.
2023-01-12 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 정수론: Nonemptiness of affine Deligne-Lusztig varieties 인쇄
by 임동규()
Affine Deligne-Lusztig varieties are first defined by Rapoport as the (conjectural) p-part of the so-called Langlands-Rapoport conjecture. It can be understood as a p-adic generalization of the classical Deligne-Lusztig varieties. One of the most basic questions is 'when they are nonempty'. For a certain union, the nonemptiness criterion is completely known (by the so-called Mazur's inequality or B(G,μ)). However, the question about the "individual" ones is moderately open (with no general conjecture). I will discuss old and new nonemptiness results and suggest a new conjecture, for the individual ones, in the basic case. As an application, I will briefly mention a new explicit dimension formula in the rank 2 case (for which no conjectural formula was stated before).
2023-01-17 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Twin-Width VIII: Delineation and Win-Wins 인쇄
by Noleen Köhler(CNRS, LAMSADE, Paris, France)
We introduce the notion of delineation. A graph class $\mathcal C$ is said delineated by twin-width (or simply, delineated) if for every hereditary closure $\mathcal D$ of a subclass of $\mathcal C$, it holds that $\mathcal D$ has bounded twin-width if and only if $\mathcal D$ is monadically dependent. An effective strengthening of delineation for a class $\mathcal C$ implies that tractable FO model checking on $\mathcal C$ is perfectly understood: On hereditary closures of subclasses $\mathcal D$ of $\mathcal C$, FO model checking on $\mathcal D$ is fixed-parameter tractable (FPT) exactly when $\mathcal D$ has bounded twin-width. Ordered graphs [BGOdMSTT, STOC ’22] and permutation graphs [BKTW, JACM ’22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA ’21]. We show that $K_{t,t}$-free segment graphs, and axis-parallel $H_t$-free unit segment graphs have bounded twin-width, where $H_t$ is the half-graph or ladder of height $t$. In contrast, axis-parallel $H_4$-free two-lengthed segment graphs have unbounded twin-width. We leave as an open question whether unit segment graphs are delineated. More broadly, we explore which structures (large bicliques, half-graphs, or independent sets) are responsible for making the twin-width large on the main classes of intersection and visibility graphs. Our new results, combined with the FPT algorithm for first-order model checking on graphs given with $O(1)$-sequences [BKTW, JACM ’22], give rise to a variety of algorithmic win-win arguments. They all fall in the same framework: If $p$ is an FO definable graph parameter that effectively functionally upperbounds twin-width on a class C, then $p(G) \ge k$ can be decided in FPT time $f(k)\cdot |V (G)|O(1)$. For instance, we readily derive FPT algorithms for k-Ladder on visibility graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This showcases that the theory of twin-width can serve outside of classes of bounded twin-width. Joint work with Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Raul Lopes and Stéphan Thomassé.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download