Sunday, April 30, 2023

<< >>  
2023. 3
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2023. 4
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
2023. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2023-05-03 / 12:00 ~ 13:00
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
Compressible Euler system (CE) is a well-known PDE model that was formulated in the 19th century for dynamics of compressible fluid. The most important feature of CE is the finite-time breakdown of smooth solutions, especially, the formation of shock wave as severe singularity. Therefore, a fundamental question (since Riemann 1858) is on what happens after a shock occurs. This is the problem on well-posedness (that is, existence, uniqueness, stability) of CE in a suitable class of solutions. We will discuss on the well-posedness problem, and its generalization for applications to other PDE models arising in various contexts such as magnetohydrodynamics, tumor angiogenesis, vehicular traffic flow, etc.
2023-05-04 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by ()
Collective cell movement is critical to the emergent properties of many multicellular systems including microbial self-organization in biofilms, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Myxococcus xanthus is a model bacteria famous for its coordinated multicellular behavior resulting in dynamic patterns formation. For example, when starving millions of cells coordinate their movement to organize into fruiting bodies – aggregates containing tens of thousands of bacteria. Relating these complex self-organization patterns to the behavior of individual cells is a complex-reverse engineering problem that cannot be solved solely by experimental research. In collaboration with experimental colleagues, we use a combination of quantitative microscopy, image processing, agent-based modeling, and kinetic theory PDEs to uncover the mechanisms of emergent collective behaviors.
2023-05-02 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: An exponential improvement for diagonal Ramsey 인쇄
by Rob Morris(IMPA)
The Ramsey number $R(k)$ is the minimum n such that every red-blue colouring of the edges of the complete graph on n vertices contains a monochromatic copy of $K_k$. It has been known since the work of Erdős and Szekeres in 1935, and Erdős in 1947, that $2^{k/2} < R(k) < 4^k$, but in the decades since the only improvements have been by lower order terms. In this talk I will sketch the proof of a very recent result, which improves the upper bound of Erdős and Szekeres by a (small) exponential factor. Based on joint work with Marcelo Campos, Simon Griffiths and Julian Sahasrabudhe.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download