Multi-omics technologies, and in particular those with single-cell and spatial resolution, provide unique opportunities to study the deregulation of intra- and inter-cellular signaling processes in disease. I will present recent methods and applications from our group toward this aim, focusing on computational approaches that combine data with biological knowledge within statistical and machine learning methods. This combination allows us to increase both the statistical power of our analyses and the mechanistic interpretability of the results. These approaches allow us to identify key processes, that can be in turn studied in detailed with dynamic mechanistic models. I will then present how cell-specific logic models, trained with measurements upon perturbations, can provides new biomarkers and treatment opportunities. Finally, I will show how, using novel microfluidics-based technologies, this approach can also be applied directly to biopsies, allowing to build mechanistic models for individual cancer patients, and use these models to prose new therapies.
|