Modeling mass or heat transfer near a wall is of broad interest in various fluid flows. Specifically, in cardiovascular flows, mass transport near the vessel wall plays an important role in cardiovascular disease. However, due to very thin concentration boundary layers, accurate computational modeling is challenging. Additionally, experimental approaches have limitations in measuring near-wall flow metrics such as wall shear stress (WSS).
In this talk, first, I will briefly review the complex flow physics near the wall in diseased vascular flows and introduce the concept of WSS manifolds in near-wall transport. Specifically, I will talk about stable and unstable manifolds calculated for a surface vector field. Next, I will discuss reduced-order data assimilation modeling as well as physics-informed neural network (PINN) approaches for obtaining WSS from measurement data away from the wall. Finally, I present a boundary-layer PINN (BL-PINN) approach inspired by the classical perturbation theory and asymptotic expansions to solve challenging thin boundary layer mass transport problems. BL-PINN demonstrates how classical theoretical approaches could be replicated in a deep learning framework.
|