Knowledge graphs represent human knowledge as a directed graph, representing each fact as a triplet consisting of a head entity, a relation, and a tail entity. Knowledge graph embedding is a representation learning technique that aims to convert the entities and relations into a set of low-dimensional embedding vectors while preserving the inherent structure of the given knowledge graph. Once the entities and relations in a knowledge graph are represented as a set of feature vectors, those vectors can be easily integrated into diverse downstream tasks. This talk introduces a new concept of knowledge graph called a bi-level knowledge graph, where the higher-level relationships between triplets can be represented. Learning representations on a bi-level knowledge graph, machines are allowed to solve problems requiring more advanced reasoning than simple link prediction. Also, as a practical example of knowledge graph embedding, how one can utilize the knowledge representations to operate a real robot is briefly explained. This talk discusses how knowledge graph embedding models effectively deliver human knowledge to machines, which is critical in many AI applications.
|