Wednesday, May 10, 2023

<< >>  
2023. 4
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
2023. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2023. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2023-05-12 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 정재훈(포항공대 (POSTECH) 수학과)
Time-series data analysis is found in various applications that deal with sequential data over the given interval of, e.g. time. In this talk, we discuss time-series data analysis based on topological data analysis (TDA). The commonly used TDA method for time-series data analysis utilizes the embedding techniques such as sliding window embedding. With sliding window embedding the given data points are translated into the point cloud in the embedding space and the method of persistent homology is applied to the obtained point cloud. In this talk, we first show some examples of time-series data analysis with TDA. The first example is from music data for which the dynamic processes in time is summarized by low dimensional representation based on persistence homology. The second is the example of the gravitational wave detection problem and we will discuss how we concatenate the real signal and topological features. Then we will introduce our recent work of exact and fast multi-parameter persistent homology (EMPH) theory. The EMPH method is based on the Fourier transform of the data and the exact persistent barcodes. The EMPH is highly advantageous for time-series data analysis in that its computational complexity is as low as O(N log N) and it provides various topological inferences almost in no time. The presented works are in collaboration with Mai Lan Tran, Chris Bresten and Keunsu Kim.
2023-05-16 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Small subgraphs with large average degree 인쇄
by Oliver Janzer(University of Cambridge)
We study the fundamental problem of finding small dense subgraphs in a given graph. For a real number $s>2$, we prove that every graph on $n$ vertices with average degree at least $d$ contains a subgraph of average degree at least $s$ on at most $nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}$ vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with $n$ vertices and average degree at least $n^{1-\frac{2}{s}+\varepsilon}$ contains a subgraph of average degree at least $s$ on $O_{\varepsilon,s}(1)$ vertices, which is also optimal up to the constant hidden in the $O(.)$ notation, and resolves a conjecture of Verstraëte. Joint work with Benny Sudakov and Istvan Tomon.
2023-05-16 / 13:00 ~ 14:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 김동한(미시간 대학)
We present how to construct a stochastic process on a finite interval with given roughness and finite joint moments of marginal distributions. Our construction method is based on Schauder representation along a general sequence of partitions and has two ramifications. The variation index of a process (the infimum value p such that the p-th variation is finite) may not be equal to the reciprocal of Hölder exponent. Moreover, we can construct a non-Gaussian family of stochastic processes mimicking (fractional) Brownian motions. Therefore, when observing a path of process in a financial market such as a price or volatility process, we should not measure its Hölder roughness by computing p-th variation and should not conclude that a given path is sampled from Brownian motion or fractional Brownian motion even though it exhibits the same properties of those Gaussian processes. This talk is based on joint work with Erhan Bayraktar and Purba Das.
2023-05-15 / 16:00 ~ 17:30
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
In geometric variational problems and non-linear PDEs, challenges often reduce down to questions on the asymptotic behavior near singularity and infinity. In this talk, we discuss the rate and direction of convergence for slowly converging solutions. Previously, they were constructed under so called the Adams-Simon positivity condition on the limit. We conversely prove that every slowly converging solution necessarily satisfies such a condition and the condition dictates possible dynamics. The result can be placed as a generalization of Thom's gradient conjecture. This is a joint work with Pei-Ken Hung at Minnesota
2023-05-17 / 13:00 ~ 14:00
학과 세미나/콜로퀴엄 - 박사논문심사: Gamma_0+(2)와 Gamma_0+(3)를 포함하는 특정 푹스 군에 관한 보형 형식의 산술 인쇄
by ()

2023-05-10 / 16:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
TBD
2023-05-11 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by ()
Tree decompositions are a powerful tool in both structural graph theory and graph algorithms. Many hard problems become tractable if the input graph is known to have a tree decomposition of bounded “width”. Exhibiting a particular kind of a tree decomposition is also a useful way to describe the structure of a graph. Tree decompositions have traditionally been used in the context of forbidden graph minors; bringing them into the realm of forbidden induced subgraphs has until recently remained out of reach. Over the last couple of years we have made significant progress in this direction, exploring both the classical notion of bounded tree-width, and concepts of more structural flavor. This talk will survey some of these ideas and results.
2023-05-11 / 11:50 ~ 12:40
대학원생 세미나 - 대학원생 세미나: 인쇄
by 최도영(카이스트)
In this talk, we present a formula for the degree of the 3-secant variety of a nonsingular projective variety embedded by a 3-very ample line bundle. The formula is provided in terms of Segre classes of the tangent bundle of a given variety. We use the generalized version of double point formula to reduce the calculation into the case of the 2-secant variety. Due to the singularity of the 2-secant variety, we use secant bundle as a nonsingular birational model and compute multiplications of desired algebraic cycles.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download