Monday, May 15, 2023

<< >>  
2023. 4
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
2023. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2023. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2023-05-19 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by ()
In this talk, we consider the problem of minimizing multi-modal loss functions with a large number of local optima. Since the local gradient points to the direction of the steepest slope in an infinitesimal neighborhood, an optimizer guided by the local gradient is often trapped in a local minimum. To address this issue, we develop a novel nonlocal gradient to skip small local minima by capturing major structures of the loss's landscape in black-box optimization. The nonlocal gradient is defined by a directional Gaussian smoothing (DGS) approach. The key idea is to conducts 1D long-range exploration with a large smoothing radius along orthogonal directions, each of which defines a nonlocal directional derivative as a 1D integral. Such long-range exploration enables the nonlocal gradient to skip small local minima. We use the Gauss-Hermite quadrature rule to approximate the d 1D integrals to obtain an accurate estimator. We also provide theoretical analysis on the convergence of the method on nonconvex landscape. In this work, we investigate the scenario where the objective function is composed of a convex function, perturbed by a highly oscillating, deterministic noise. We provide a convergence theory under which the iterates converge to a tightened neighborhood of the solution, whose size is characterized by the noise frequency. Furthermore, if the noise level decays to zero when approaching global minimum, we prove that the DGS optimization converges to the exact global minimum with linear rates, similarly to standard gradient-based method in optimizing convex functions. We complement our theoretical analysis with numerical experiments to illustrate the performance of this approach.
2023-05-16 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Small subgraphs with large average degree 인쇄
by Oliver Janzer(University of Cambridge)
We study the fundamental problem of finding small dense subgraphs in a given graph. For a real number $s>2$, we prove that every graph on $n$ vertices with average degree at least $d$ contains a subgraph of average degree at least $s$ on at most $nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}$ vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with $n$ vertices and average degree at least $n^{1-\frac{2}{s}+\varepsilon}$ contains a subgraph of average degree at least $s$ on $O_{\varepsilon,s}(1)$ vertices, which is also optimal up to the constant hidden in the $O(.)$ notation, and resolves a conjecture of Verstraëte. Joint work with Benny Sudakov and Istvan Tomon.
2023-05-16 / 13:00 ~ 14:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 김동한(미시간 대학)
We present how to construct a stochastic process on a finite interval with given roughness and finite joint moments of marginal distributions. Our construction method is based on Schauder representation along a general sequence of partitions and has two ramifications. The variation index of a process (the infimum value p such that the p-th variation is finite) may not be equal to the reciprocal of Hölder exponent. Moreover, we can construct a non-Gaussian family of stochastic processes mimicking (fractional) Brownian motions. Therefore, when observing a path of process in a financial market such as a price or volatility process, we should not measure its Hölder roughness by computing p-th variation and should not conclude that a given path is sampled from Brownian motion or fractional Brownian motion even though it exhibits the same properties of those Gaussian processes. This talk is based on joint work with Erhan Bayraktar and Purba Das.
2023-05-15 / 16:00 ~ 17:30
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
In geometric variational problems and non-linear PDEs, challenges often reduce down to questions on the asymptotic behavior near singularity and infinity. In this talk, we discuss the rate and direction of convergence for slowly converging solutions. Previously, they were constructed under so called the Adams-Simon positivity condition on the limit. We conversely prove that every slowly converging solution necessarily satisfies such a condition and the condition dictates possible dynamics. The result can be placed as a generalization of Thom's gradient conjecture. This is a joint work with Pei-Ken Hung at Minnesota
2023-05-17 / 13:00 ~ 14:00
학과 세미나/콜로퀴엄 - 박사논문심사: Gamma_0+(2)와 Gamma_0+(3)를 포함하는 특정 푹스 군에 관한 보형 형식의 산술 인쇄
by ()

2023-05-19 / 10:00 ~ 11:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 강문진(한국과학기술원)
The compressible Euler system (CE) is one of the oldest PDE models in fluid dynamics as a representative model that describes the flow of compressible fluids with singularities such as shock waves. But, CE is regarded as an ideal model for inviscid gas, and may be physically meaningful only as a limiting case of the corresponding Navier-Stokes system(NS) with small viscosity and heat conductivity that can be negligible. Therefore, any stable physical solutions of CE should be constructed by inviscid limit of solutions of NS. This is known as the most challenging open problem in mathematical fluid dynamics (even for incompressible case). In this talk, I will present my recent works that tackle the open problem, using new methods: the (so-called) weighted relative entropy method with shifts (for controlling shocks) and the viscous wave-front tracking method (for handling general solution with small total variation).
2023-05-18 / 11:50 ~ 12:40
대학원생 세미나 - 대학원생 세미나: 인쇄
by 안정호(카이스트)
We introduce concepts of parameterized complexity, especially, kernelization. Kernelization is a polynomial-time preprocessing algorithm that converts a given instance for a problem to a smaller instance while keeping the answer to the problem. Delicate kernelization mostly boosts the speed of solving the problem. We explain standard techniques in kernelizations, for instance, the sunflower lemma. Most optimization problems can be reformulated in the Hitting Set problem format, and the sunflower lemma gives us a simple yet beautiful kernelization for the problem. We further introduce our recent work about the Hitting Set problem on sparse graph classes.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download