Tuesday, August 22, 2023

<< >>  
2023. 7
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2023. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2023. 9
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
2023-08-29 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: From coordinate subspaces over finite fields to ideal multipartite uniform clutters 인쇄
by 이다빈(KAIST 산업및시스템공학과)
Take a prime power $q$, an integer $n\geq 2$, and a coordinate subspace $S\subseteq GF(q)^n$ over the Galois field $GF(q)$. One can associate with $S$ an $n$-partite $n$-uniform clutter $\mathcal{C}$, where every part has size $q$ and there is a bijection between the vectors in $S$ and the members of $\mathcal{C}$. In this paper, we determine when the clutter $\mathcal{C}$ is ideal, a property developed in connection to Packing and Covering problems in the areas of Integer Programming and Combinatorial Optimization. Interestingly, the characterization differs depending on whether $q$ is $2,4$, a higher power of $2$, or otherwise. Each characterization uses crucially that idealness is a minor-closed property: first the list of excluded minors is identified, and only then is the global structure determined. A key insight is that idealness of $\mathcal{C}$ depends solely on the underlying matroid of $S$. Our theorems also extend from idealness to the stronger max-flow min-cut property. As a consequence, we prove the Replication and $\tau=2$ Conjectures for this class of clutters. This is joint work with Ahmad Abdi (London School of Economics).
2023-08-22 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Orientations of $P_4$-bind the dichromatic number 인쇄
by Linda Cook(IBS 이산수학그룹)
An oriented graph is a digraph that does not contain a directed cycle of length two. An (oriented) graph $D$ is $H$-free if $D$ does not contain $H$ as an induced sub(di)graph. The Gyárfás-Sumner conjecture is a widely-open conjecture on simple graphs, which states that for any forest $F$, there is some function $f$ such that every $F$-free graph $G$ with clique number $\omega(G)$ has chromatic number at most $f(\omega(G))$. Aboulker, Charbit, and Naserasr [Extension of Gyárfás-Sumner Conjecture to Digraphs; E-JC 2021] proposed an analogue of this conjecture to the dichromatic number of oriented graphs. The dichromatic number of a digraph $D$ is the minimum number of colors required to color the vertex set of $D$ so that no directed cycle in $D$ is monochromatic. Aboulker, Charbit, and Naserasr's $\overrightarrow{\chi}$-boundedness conjecture states that for every oriented forest $F$, there is some function $f$ such that every $F$-free oriented graph $D$ has dichromatic number at most $f(\omega(D))$, where $\omega(D)$ is the size of a maximum clique in the graph underlying $D$. In this talk, we perform the first step towards proving Aboulker, Charbit, and Naserasr's $\overrightarrow{\chi}$-boundedness conjecture by showing that it holds when $F$ is any orientation of a path on four vertices.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download