Wednesday, June 21, 2023

<< >>  
2023. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2023. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2023. 7
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2023-06-21 / 14:00 ~ 15:30
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by 김찬호()
We discuss an explicit formula for the structure of Bloch–Kato Selmer groups of the central critical twist of modular forms if the analytic rank is ≤ 1 or the Iwasawa main conjecture localized at the augmentation ideal holds. This formula reveals more refined arithmetic information than the p-part of the Tamagawa number conjecture for motives of modular forms and reduces the corresponding Beilinson–Bloch–Kato conjecture to a purely analytic statement. Our formula is insensitive to the local behavior at p.
2023-06-27 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: The hat guessing number of graphs 인쇄
by Chong Shangguan(Shandong University)
Consider the following hat guessing game: $n$ players are placed on $n$ vertices of a graph, each wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. Given a graph $G$, its hat guessing number $HG(G)$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. In 2008, Butler, Hajiaghayi, Kleinberg, and Leighton asked whether the hat guessing number of the complete bipartite graph $K_{n,n}$ is at least some fixed positive (fractional) power of $n$. We answer this question affirmatively, showing that for sufficiently large $n$, $HG(K_{n,n})\ge n^{0.5-o(1)}$. Our guessing strategy is based on some ideas from coding theory and probabilistic method. Based on a joint work with Noga Alon, Omri Ben-Eliezer, and Itzhak Tamo.
2023-06-26 / 16:00 ~ 18:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
TBA
2023-06-23 / 16:00 ~ 18:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
We introduce configurations of lines in the combinatorial and geometric setting. After a brief summary of the classical theory we will discuss results in the 4-dimensional setting. These include work of Ruberman and Starkston in the topological category and work in progress in the smooth category that is joint work with D. McCoy And J. Park.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download