Tuesday, July 18, 2023

<< >>  
2023. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2023. 7
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2023. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2023-07-23 / 16:00 ~ 17:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by ()
For hyperbolic systems of conservation laws in one space dimension endowed with a single convex entropy, it is an open question if it is possible to construct solutions via convex integration. Such solutions, if they exist, would be highly non-unique and exhibit little regularity. In particular, they would not have the strong traces necessary for the nonperturbative $L^2$ stability theory of Vasseur. Whether convex integration is possible is a question about large data, and the global geometric structure of genuine nonlinearity for the underlying PDE. In this talk, I will discuss recent work which shows the impossibility, for a large class of 2x2 systems, of doing convex integration via the use of $T_4$ configurations. Our work applies to every well-known 2x2 hyperbolic system of conservation laws which verifies the Liu entropy condition. This talk is based on joint work with László Székelyhidi.
2023-07-20 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by 박준영()
We prove an arithmetic path integral formula for the inverse p-adic absolute values of the p-adic L-functions of elliptic curves over the rational numbers with good ordinary reduction at odd prime p. This is joint work with Jeehoon Park
2023-07-21 / 16:00 ~ 17:30
학과 세미나/콜로퀴엄 - 계산수학 세미나: 인쇄
by 한주영 박사()
This three-day lecture series aims to explore some topics in mathematical image processing before the era of neural networks, highlighting the techniques and applications that were prevalent at that time. From the classical filter-based models to PDE-based or minimization-based models, a variety of example-driven explanations and underlying mathematical theories are provided. By attending the lecture series, participants will gain a comprehensive understanding of image processing techniques used before the advent of neural networks, exploring the challenges, innovations and applications of classical algorithms. This knowledge will provide a foundation for further exploration in the field of image processing and its evolution into the AI-driven era.
2023-07-20 / 14:30 ~ 16:00
학과 세미나/콜로퀴엄 - 계산수학 세미나: 인쇄
by 한주영 박사()
This three-day lecture series aims to explore some topics in mathematical image processing before the era of neural networks, highlighting the techniques and applications that were prevalent at that time. From the classical filter-based models to PDE-based or minimization-based models, a variety of example-driven explanations and underlying mathematical theories are provided. By attending the lecture series, participants will gain a comprehensive understanding of image processing techniques used before the advent of neural networks, exploring the challenges, innovations and applications of classical algorithms. This knowledge will provide a foundation for further exploration in the field of image processing and its evolution into the AI-driven era.
2023-07-19 / 16:00 ~ 17:30
학과 세미나/콜로퀴엄 - 계산수학 세미나: 인쇄
by 한주영 박사()
This three-day lecture series aims to explore some topics in mathematical image processing before the era of neural networks, highlighting the techniques and applications that were prevalent at that time. From the classical filter-based models to PDE-based or minimization-based models, a variety of example-driven explanations and underlying mathematical theories are provided. By attending the lecture series, participants will gain a comprehensive understanding of image processing techniques used before the advent of neural networks, exploring the challenges, innovations and applications of classical algorithms. This knowledge will provide a foundation for further exploration in the field of image processing and its evolution into the AI-driven era.
2023-07-25 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Hamilton cycles and optimal matchings in a random subgraph of uniform Dirac hypergraphs 인쇄
by 강동엽(IBS 극단조합및확률그룹)
A loose cycle is a cyclic ordering of edges such that every two consecutive edges share exactly one vertex. A cycle is Hamilton if it spans all vertices. A codegree of a $k$-uniform hypergraph is the minimum nonnegative integer $t$ such that every subset of vertices of size $k-1$ is contained in $t$ distinct edges. We prove "robust" versions of Dirac-type theorems for Hamilton cycles and optimal matchings. Let $\mathcal{H}$ be a $k$-uniform hypergraph on $n$ vertices with $n \in (k-1)\mathbb{N}$ and codegree at least $n/(2k-2)$, and let $\mathcal{H}_p$ be a spanning subgraph of $\mathcal{H}$ such that each edge of $\mathcal{H}$ is included in $\mathcal{H}_p$ with probability $p$ independently at random. We prove that a.a.s. $\mathcal{H}_p$ contains a loose Hamilton cycle if $p = \Omega(n^{-k+1} \log n)$, which is asymptotically best possible. We also present similar results for Hamilton $\ell$-cycles for $\ell \geq 2$. Furthermore, we prove that if $\mathcal{H}$ is a $k$-uniform hypergraph on $n$ vertices with $n \notin k \mathbb{N}$ and codegree at least $\lfloor n/k \rfloor$, then a.a.s. $\mathcal{H}_p$ contains a matching of size $\lfloor n/k \rfloor$ if $p = \Omega(n^{-k+1} \log n)$. This is also asymptotically best possible. This is joint work with Michael Anastos, Debsoumya Chakraborti, Abhishek Methuku, and Vincent Pfenninger.
2023-07-18 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Rainbow Turán problems 인쇄
by Andrzej Grzesik(Jagiellonian University)
In a rainbow variant of the Turán problem, we consider $k$ graphs on the same set of vertices and want to determine the smallest possible number of edges in each graph, which guarantees the existence of a copy of a given graph $F$ containing at most one edge from each graph. In other words, we treat each of the $k$ graphs as a graph in one of the $k$ colors and consider how many edges in each color force a rainbow copy of a given graph $F$. In the talk, we will describe known results on the topic, as well as present recent developments, obtained jointly with Sebastian Babiński and Magdalen Prorok, solving the rainbow Turán problem for a path on 4 vertices and a directed triangle with any number of colors.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download