Thursday, July 27, 2023

<< >>  
2023. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
2023. 7
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2023. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2023-08-03 / 14:00 ~ 15:00
학과 세미나/콜로퀴엄 - 정수론: 인쇄
by 문용석()
Let X be a semistable p-adic formal scheme. In this talk, we will discuss a prismatic description of semistable local systems on the generic fiber of X. A main new ingredient is a purity result. This is based on a joint work with Heng Du, Tong Liu, Koji Shimizu.
2023-08-02 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: High chromatic common graphs 인쇄
by Daniel Kráľ(Masaryk University)
Ramsey’s Theorem guarantees for every graph H that any 2-edge-coloring of a sufficiently large complete graph contains a monochromatic copy of H. As probabilistic constructions often provide good bounds on quantities in extremal combinatorics, we say that a graph H is common if the random 2-edge-coloring asymptotically minimizes the number of monochromatic copies of H. This notion goes back to the work of Erdős in the 1960s, who conjectured that every complete graph is common. The conjecture was disproved by Thomason in the 1980s, however, a classification of common graphs remains one of the most intriguing problems in extremal combinatorics. Sidorenko’s Conjecture (if true) would imply that every bipartite graph is common, and in fact, no bipartite common graph unsettled for Sidorenko’s Conjecture is known. Until Hatami et al. showed that a 5-wheel is common about a decade ago, all graphs known to be common had chromatic number at most three. The existence of a common graph with chromatic number five or more has remained open for three decades. We will present a construction of (connected) common graphs with arbitrarily large chromatic number. At the end of the talk, we will also briefly discuss the extension of the notion to more colors and particularly its relation to Sidorenko’s Conjecture. The main result presented in the talk is based on joint work with Jan Volec and Fan Wei.
2023-07-28 / 15:00 ~ 16:00
학과 세미나/콜로퀴엄 - 대수기하학: Hodge theory and essential dimension 인쇄
by Patrick Brosnan(University of Maryland)
The essential dimension of an algebraic object E over a field L is heuristically the number of parameters it takes to define it. This notion was formalized and developed by Buhler and Reichstein in the late 90s, who noticed at the time, that several classical results could be interpreted as theorems about essential dimension. Since the paper of Buhler and Reichstein, most of the progress on essential dimension has had to do with essential dimension of versal G-torsors for an algebraic group G. But recently Farb, Kisin and Wolfson showed that interesting theorems can be proved for certain (usually) non-versal torsors arising from congruence covers of Shimura varieties. I'll explain this work, some extensions of it proved by me and Fakhruddin, and a conjecture on period maps which generalizes the picture.
2023-08-01 / 16:00 ~ 18:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
We first review fundamental concepts about Seiberg-Witten theory for closed 4-manifolds. Subsequently, we will introduce a refinement of Seiberg-Witten invariant, called Bauer—Furuta invariant. Using Bauer—Furuta invariant, I will explain how to prove Furuta’s 10/8 inequality and its variant for group actions proven by Bryan and Kato.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download