Friday, August 4, 2023

<< >>  
2023. 7
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2023. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2023. 9
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
2023-08-11 / 15:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Ecosystems are complex systems of various physical, biological, and chemical processes. Since ecosystem dynamics are composed of a mixture of different levels of stochasticity and nonlinearity, handling these data is a challenge for existing methods of time series–based causal inferences. Here, we show that, by harnessing contemporary machine learning approaches, the concept of Granger causality can be effectively extended to the analysis of complex ecosystem time series and bridge the gap between dynamical and statistical approaches. The central idea is to use an ensemble of fast and highly predictive artificial neural networks to select a minimal set of variables that maximizes the prediction of a given variable. It enables decomposition of the relationship among variables through quantifying the contribution of an individual variable to the overall predictive performance. We show how our approach, EcohNet, can improve interaction network inference for a mesocosm experiment and simulated ecosystems. The application of the method to a long-term lake monitoring dataset yielded interpretable results on the drivers causing cyanobacteria blooms, which is a serious threat to ecological integrity and ecosystem services. Since performance of EcohNet is enhanced by its predictive capabilities, it also provides an optimized forecasting of overall components in ecosystems. EcohNet could be used to analyze complex and hybrid multivariate time series in many scientific areas not limited to ecosystems.
2023-08-04 / 14:00 ~ 16:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
The well-known Internal Model Principle (IMP) is a cornerstone of modern control theory. It stipulates the necessary conditions for asymptotic robustness of disturbance-prone dynamical systems by asserting that such a system must embed a subsystem in a feedback loop, and this subsystem must be able to reduplicate the dynamic disturbance using only the regulated variable as the input. The insights provided by IMP can help in both designing suitable controllers and also in analysing the regulatory mechanisms in complex systems. So far the application of IMP in biology has been case-specific and ad hoc, primarily due to the lack of generic versions of the IMP for biomolecular reaction networks that model biological processes. In this short article we highlight the need for an IMP in biology and discuss a recently developed version of it for biomolecular networks that exhibit maximal Robust Perfect Adaptation (maxRPA) by being robust to the maximum number of disturbance sources.
2023-08-08 / 10:00 ~ 11:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
We consider the nonlinear Schrödinger equation and the nonlinear wave equation with initial data decaying slower than L^2 functions. However, the L^p-spaces for p \neq 2 are not invariant under the linear propagation. We consider function spaces, which allow for decay like in L^p, p > 2, and which are invariant under the linear propagation. We show L^p-smoothing estimates using \ell^2-decoupling due to Bourgain-Demeter. The results on nonlinear wave equations are joint work with Jan Rozendaal (IMPAN).
2023-08-04 / 16:00 ~ 18:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
We review constructions of Manolescu’s Floer homotopy type, which gives a homotopical refinement of monopole Floer homology. Based on it, we will introduce some homology cobordism/ knot concordance invariant. Using these invariants, we provide relative versions of 10/8 inequalities for 4-manifolds with boundary or surfaces in 4-manifolds. In particular, I’ll explain Manolescu’s relative 10/8 inequality, real 10/8 inequality, and Montague’s 10/8 inequality.
2023-08-10 / 11:00 ~ 12:30
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
In this lecture series, I will discuss rigidity in the long time dynamics of some evolution equation. The specific equation to be paid attention to is the self-dual Chern-Simons-Schrödinger equation (CSS) within equivariant symmetry. (CSS) is a gauged 2D cubic nonlinear Schrödinger equation that has pseudoconformal invariance and solitons. However, two distinguished features of (CSS), the self-duality and non-locality, make the long time dynamics of (CSS) surprisingly rigid. For instance, (i) any finite energy spatially decaying solutions to (CSS) decompose into at most one modulated soliton and a radiation. Moreover, (ii) in the high equivariance case (i.e., the equivariance index ≥ 1), any smooth finite-time blow-up solutions even have a universal blow-up speed, namely, the pseudoconformal one. We will explore this rigid dynamics using modulation analysis, combined with the self-duality and non-locality of the problem, in detail.
2023-08-09 / 11:00 ~ 12:30
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
In this lecture series, I will discuss rigidity in the long time dynamics of some evolution equation. The specific equation to be paid attention to is the self-dual Chern-Simons-Schrödinger equation (CSS) within equivariant symmetry. (CSS) is a gauged 2D cubic nonlinear Schrödinger equation that has pseudoconformal invariance and solitons. However, two distinguished features of (CSS), the self-duality and non-locality, make the long time dynamics of (CSS) surprisingly rigid. For instance, (i) any finite energy spatially decaying solutions to (CSS) decompose into at most one modulated soliton and a radiation. Moreover, (ii) in the high equivariance case (i.e., the equivariance index ≥ 1), any smooth finite-time blow-up solutions even have a universal blow-up speed, namely, the pseudoconformal one. We will explore this rigid dynamics using modulation analysis, combined with the self-duality and non-locality of the problem, in detail.
2023-08-08 / 11:00 ~ 12:30
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
In this lecture series, I will discuss rigidity in the long time dynamics of some evolution equation. The specific equation to be paid attention to is the self-dual Chern-Simons-Schrödinger equation (CSS) within equivariant symmetry. (CSS) is a gauged 2D cubic nonlinear Schrödinger equation that has pseudoconformal invariance and solitons. However, two distinguished features of (CSS), the self-duality and non-locality, make the long time dynamics of (CSS) surprisingly rigid. For instance, (i) any finite energy spatially decaying solutions to (CSS) decompose into at most one modulated soliton and a radiation. Moreover, (ii) in the high equivariance case (i.e., the equivariance index ≥ 1), any smooth finite-time blow-up solutions even have a universal blow-up speed, namely, the pseudoconformal one. We will explore this rigid dynamics using modulation analysis, combined with the self-duality and non-locality of the problem, in detail.
2023-08-09 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Intersection patterns of convex sets 인쇄
by Amzi Jeffs(Carnegie Mellon University)
How can one arrange a collection of convex sets in d-dimensional Euclidean space? This guiding question is fundamental in discrete geometry, and can be made concrete in a variety of ways, for example the study of hyperplane arrangements, embeddability of simplicial complexes, Helly-type theorems, and more. This talk will focus on the classical topic of d-representable complexes and its more recent generalization to convex codes. We will show how these frameworks differ, share some novel Helly-type results, and offer several tantalizing open questions.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download