In this lecture series, I will discuss rigidity in the long time dynamics of some evolution equation. The specific equation to be paid attention to is the self-dual Chern-Simons-Schrödinger equation (CSS) within equivariant symmetry. (CSS) is a gauged 2D cubic nonlinear Schrödinger equation that has pseudoconformal invariance and solitons. However, two distinguished features of (CSS), the self-duality and non-locality, make the long time dynamics of (CSS) surprisingly rigid. For instance, (i) any finite energy spatially decaying solutions to (CSS) decompose into at most one modulated soliton and a radiation. Moreover, (ii) in the high equivariance case (i.e., the equivariance index ≥ 1), any smooth finite-time blow-up solutions even have a universal blow-up speed, namely, the pseudoconformal one. We will explore this rigid dynamics using modulation analysis, combined with the self-duality and non-locality of the problem, in detail.
|