Friday, February 28, 2025

<< >>  
2025. 1
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2025. 2
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28
2025. 3
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2025-03-04 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 안성수()
Molecular simulations serve as fundamental tools for understanding and predicting the system of interest at atomic level. It is significant for applications like drug and material discovery, but often cannot scale to real-world problems due to the computational bottleneck. In this seminar, I will briefly introduce this area and recent machine learning algorithms that have shown great promise in accelerating the molecular simulations. I will also introduce some of my recent research in this direction. First work is about structure prediction of metal-organic frameworks using geometric flow matching (or neural ODE on SO(3) manifolds) and (2) simulating chemical reactions / transition paths through RL-like training of diffusion models (or log-divergence minimization between path measures).
2025-03-06 / 11:50 ~ 12:30
대학원생 세미나 - 대학원생 세미나: 인쇄
by 정의현(카이스트 수리과학과)
In this talk, we explore some ordinary and partial differential equations (ODEs and PDEs) in a class of completely integrable systems. We begin by introducing Hamiltonian systems in classical mechanics and their integrability. We then discuss completely integrable ODEs and introduce the Lax pair formulation, a powerful framework for analyzing complete integrability. As a concrete example, we examine the classical Calogero-Moser system, a well-known completely integrable many-body system with remarkable mathematical properties. We then investigate the Calogero-Moser derivative nonlinear Schrödinger equation (CM-DNLS), which is a completely integrable PDE that arises as the continuum limit of the classical Calogero-Moser system. Finally, we present recent developments in the study of CM-DNLS, such as well-posedness and long-time dynamics.
2025-03-06 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by ()
We study stochastic motion of objects in micrometer-scale living systems: tracer particles in living cells, pathogens in mucus, and single cells foraging for food. We use stochastic models and state space models to track objects through time and infer properties of objects and their surroundings. For example, we can calculate the distribution of first passage times for a pathogen to cross a mucus barrier, or we can spatially resolve the fluid properties of the cytoplasm in a living cell. Recently developed computational tools, particularly in the area of Markov Chain Monte Carlo, are creating new opportunities to improve multiple object tracking. The primary remaining challenge, called the data association problem, involves mapping measurement data (e.g., positions of objects in a video) to objects through time. I will discuss new developments in the field and ongoing efforts in my lab to implement them. I will motivate these techniques with specific examples that include tracking salmonella in GI mucus, genetically expressed proteins in the cell cytoplasm, active transport of nuclei in multinucleate fungal cells, and raphid diatoms in seawater surface interfaces.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download