Friday, November 17, 2023

<< >>  
2023. 10
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2023. 11
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2023. 12
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2023-11-22 / 16:00 ~ 17:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by 김민규(고등과학원)
Finite path integral is a finite version of Feynman’s path integral, which is a mathematical methodology to construct TQFT’s (topological quantum field theories) from finite gauge theory. It was introudced by Dijkgraaf and Witten in 1990. We study finite path integral model by replacing finite gauge theory with homological algebra based on bicommutative Hopf algebras. It turns out that Mayer-Vietoris functors such as homology theories extend to TQFT which preserves compositions up to a scalar. This talk concerns the second cohomology class of cobordism (more generally, cospan) categories induced by such scalars. In particular, we will explain that the obstruction class is described purely by homological algebra, not via finite path integral.
2023-11-20 / 15:00 ~ 16:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by 김희정(경북대학교)
The mapping class group Map(S) of a surface S is the group of isotopy classes of diffeomorphisms of S. When S is a finite-type surface, the classical mapping class group Map(S) has been well understood. On the other hand, there are recent developments on mapping class groups of infinite-type surfaces. In this talk, we discuss mapping class groups of finite-type and infinite-type surfaces and elements of these groups. Also, we define surface Houghton groups, which are subgroups of mapping class groups of certain infinite-type surfaces. Then we discuss finiteness properties of surface Houghton groups, which is a joint work with Aramayona, Bux, and Leininger.
2023-11-20 / 17:00 ~ 18:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
We consider a family of nonlocal diffusion equations with a prescribed equilibrium state, which includes the fractional heat equation as well as a nonlocal equation of Fokker-Planck type. This family of equations will be shown to arise as the gradient flow of the relative entropy with respect to a version of the nonlocal Wasserstein metric introduced by Erbar. Such equations may also be viewed as the evolutionary Gamma-limit of a certain sequence of heat flows on discrete Markov chains. I will discuss criteria for existence, uniqueness, and stability of solutions, and sufficient criteria on the equilibrium state which ensure fast convergence to equilibrium.
2023-11-20 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
For a uniformly supersonic flow past a convex cornered wedge with the pressure being given for the surrounding quiescent gas at the downstream, as shown in experimental results, it is expected to form a shock followed by a contact discontinuity, which is also called the jet flow. By the shock polar analysis, it is well-known that there are two possible shocks, one a strong shock and the other one a weak shock. The strong shock is always transonic, while the weak shock could be transonic or supersonic. We prove the global existence, asymptotic behaviors, uniqueness, and stability of the subsonic jet with a strong transonic shock under the perturbation of the upstream flow and the pressure of the surrounding quiescent gas, for the two-dimensional steady full Euler equations.
2023-11-21 / 16:00 ~ 17:00
학과 세미나/콜로퀴엄 - 박사논문심사: 불균질 위치 점프 과정과 확산 법칙 인쇄
by 임현진(KAIST)

2023-11-17 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 최하영(경북대학교 수학과)
In this talk, we consider a group-sparse matrix estimation problem. This problem can be solved by applying the existing compressed sensing techniques, which either suffer from high computational complexities or lack of algorithm robustness. To overcome the situation, we propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness. Specifically, we map the original iterative shrinkage thresholding algorithm (ISTA) into an unrolled recurrent neural network (RNN), thereby improving the convergence rate and computational efficiency through end-to-end training. Moreover, the proposed algorithm unrolling approach inherits the structure and domain knowledge of the ISTA, thereby maintaining the algorithm robustness, which can handle non-Gaussian preamble sequence matrix in massive access. We further simplify the unrolled network structure with rigorous theoretical analysis by reducing the redundant training parameters. Furthermore, we prove that the simplified unrolled deep neural network structures enjoy a linear convergence rate. Extensive simulations based on various preamble signatures show that the proposed unrolled networks outperform the existing methods regarding convergence rate, robustness, and estimation accuracy.
2023-11-22 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - BK21세미나: 인쇄
by ()
Zeta functions and zeta values play a central role in Modern Number Theory and are connected to practical applications in codes and cryptography. The significance of these objects is demonstrated by the fact that two of the seven Clay Mathematics Million Dollar Millennium Problems are related to these objects, namely the Riemann hypothesis and the Birch and Swinnerton-Dyer conjecture. We first recall results and well-known conjectures concerning these objects over number fields. If time permits, we will present recent developments in the setting of function fields. This is a joint work with Im Bo-Hae and Kim Hojin among others.
2023-11-17 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 이미경(부산대학교 수학과)
In this talk, we consider nonlinear elliptic equations of the $p$-Laplacian type with lower order terms which involve nonnegative potentials satisfying a reverse H\"older type condition. We establish interior and boundary $L^q$ estimates for the gradient of weak solutions and the lower order terms, independently, under sharp regularity conditions on the coefficients and the boundaries. In addition, we prove interior estimates for Hessian of strong solutions and the lower order terms for nondivergence type elliptic equations. The talk is based on joint works with Jihoon Ok and Yoonjung Lee.
2023-11-20 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: On colorings of hypergraphs embeddable in R^d 인쇄
by 이승훈(Hebrew University of Jerusalem)
Given a hypergraph $H=(V,E)$, we say that $H$ is (weakly) $m$-colorable if there is a coloring $c:V\to [m]$ such that every hyperedge of $H$ is not monochromatic. The (weak) chromatic number of $H$, denoted by $\chi(H)$, is the smallest $m$ such that $H$ is $m$-colorable. A vertex subset $T \subseteq V$ is called a transversal of $H$ if for every hyperedge $e$ of $H$ we have $T\cap e \ne \emptyset$. The transversal number of $H$, denoted by $\tau(H)$, is the smallest size of a transversal in $H$. The transversal ratio of $H$ is the quantity $\tau(H)/|V|$ which is between 0 and 1. Since a lower bound on the transversal ratio of $H$ gives a lower bound on $\chi(H)$, these two quantities are closely related to each other. Upon my previous presentation, which is based on the joint work with Joseph Briggs and Michael Gene Dobbins (https://www.youtube.com/watch?v=WLY-8smtlGQ), we update what is discovered in the meantime about transversals and colororings of geometric hypergraphs. In particular, we focus on chromatic numbers of $k$-uniform hypergraphs which are embeddable in $\mathbb{R}^d$ by varying $k$, $d$, and the notion of embeddability and present lower bound constructions. This result can also be regarded as an improvement upon the research program initiated by Heise, Panagiotou, Pikhurko, and Taraz, and the program by Lutz and Möller. We also present how this result is related to the previous results and open problems regarding transversal ratios. This presentation is based on the joint work with Eran Nevo.
2023-11-22 / 16:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
I will report on some recent results on modelling the heart, the external circulation, and their application to problems of clinical relevance. I will show that a proper integration between PDE-based and machine-learning algorithms can improve the computational efficiency and enhance the generality of our iHEART simulator.
2023-11-17 / 11:00 ~ 12:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
TBD
2023-11-23 / 14:30 ~ 16:00
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
(information) "Introduction to Oriented Matroids" Series Thursdays 14:30-15:45
2023-11-23 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by 박지원()
In the analysis of singularities, uniqueness of limits often arises as an important question: that is, whether the geometry depends on the scales one takes to approach the singularity. In his seminal work, Simon demonstrated that Lojasiewicz inequalities, originally known in real algebraic geometry in finite dimensions, can be applied to show uniqueness of limits in geometric analysis in infinite dimensional settings. We will discuss some instances of this very successful technique and its applications.
2023-11-21 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: Colloquium: An Optimal Transport Approach to Understanding the Interface Between Water and Ice 인쇄
by 김영헌(UBC Math)
The Stefan problem is a free boundary problem describing the interface between water and ice. It has PDE and probabilistic aspects. We discuss an approach to this problem, based on optimal transport theory. This approach is related to the Skorokhod problem, a classical problem in probability regarding the Brownian motion.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download