Wednesday, November 29, 2023

<< >>  
2023. 10
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2023. 11
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2023. 12
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2023-12-04 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Almost spanning distance trees in subsets of finite vector spaces 인쇄
by Ben Lund(IBS 이산수학그룹)
For $d\ge 2$ and an odd prime power $q$, let $\mathbb{F}_q^d$ be the $d$-dimensional vector space over the finite field $\mathbb{F}_q$. The distance between two points $(x_1,\ldots,x_d)$ and $(y_1,\ldots,y_d)$ is defined to be $\sum_{i=1}^d (x_i-y_i)^2$. An influential result of Iosevich and Rudnev is: if $E \subset \mathbb{F}_q^d$ is sufficiently large and $t \in \mathbb{F}_q$, then there are a pair of points $x,y \in E$ such that the distance between $x$ and $y$ is $t$. Subsequent works considered embedding graphs of distances, rather than a single distance. I will discuss joint work with Debsoumya Chakraborti, in which we show that every sufficiently large subset of $\mathbb{F}_q^d$ contains every nearly spanning tree of distances with bounded degree in each distance. The main novelty in this result is that the distance graphs we find are nearly as large as the set $S$ itself, but even for smaller distance trees our work leads to quantitative improvements to previously known bounds. A key ingredient in our proof is a new colorful generalization of a classical result of Haxell on finding nearly spanning bounded-degree trees in expander graphs. This is joint work with Debsoumya Chakraborti.
2023-12-04 / 16:00 ~ 18:00
IBS-KAIST 세미나 - 대수기하학: 인쇄
by ()
The Nagata Conjecture governs the minimal degree required for a plane algebraic curve to pass through a collection of $r$ general points in the projective plane $P^2$ with prescribed multiplicities. The "SHGH" Conjecture governs the dimension of the linear space of these polynomials. We formulate transcendental versions of these conjectures in term of pluripotential theory and we're making some progress.
2023-12-01 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 권도현(서울시립대학교 수학과)
The study of gradient flows has been extensive in the fields of partial differential equations, optimization, and machine learning. In this talk, we aim to explore the relationship between gradient flows and their discretized formulations, known as De Giorgi's minimizing movements, in various spaces. Our discussion begins with examining the backward Euler method in Euclidean space, and mean curvature flow in the space of sets. Then, we investigate gradient flows in the space of probability measures equipped with the distance arising in the Monge-Kantorovich optimal transport problem. Subsequently, we provide a theoretical understanding of score-based generative models, demonstrating their convergence in the Wasserstein distance.
2023-11-30 / 11:50 ~ 12:40
대학원생 세미나 - 대학원생 세미나: Data Topology and Geometry-dependent Bounds on ReLU Network Widths 인쇄
by 이상민(Dept. of Mathematical Sciences, KAIST)
While deep neural networks (DNNs) have been widely used in numerous applications over the past few decades, their underlying theoretical mechanisms remain incompletely understood. In this presentation, we propose a geometrical and topological approach to understand how deep ReLU networks work on classification tasks. Specifically, we provide lower and upper bounds of neural network widths based on the geometrical and topological features of the given data manifold. We also prove that irrespective of whether the mean square error (MSE) loss or binary cross entropy (BCE) loss is employed, the loss landscape has no local minimum.
2023-11-30 / 14:30 ~ 15:45
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
(information) "Introduction to Oriented Matroids" Series Thursdays 14:30-15:45
2023-12-05 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: Colloquium: Real Eigenvalues of Asymmetric Random Matrices 인쇄
by 변성수(서울대학교 수리과학부)
In this talk, I will discuss how the fundamental concepts in probability theory—the law of large numbers, the central limit theorem, and the large deviation principle—are developed in the study of real eigenvalues of asymmetric random matrices.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download