Monday, December 4, 2023

<< >>  
2023. 11
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2023. 12
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2024. 1
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2023-12-08 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
We investigate the global existence and optimal time decay rate of solution to the one dimensional (1D) two-phase flow described by compressible Euler equations coupled with compressible Navier-Stokes equations through the relaxation drag force on the momentum equations (Euler-Navier-Stokes system). First, we prove the global existence of strong solution and the stability of the constant equilibrium state to 1D Cauchy problem of compressible Euler-Navier-Stokes system by using the standard continuity argument for small $H^{1}$ data while its second order derivative can be large. Then we derive the optimal time decay rate to the constant equilibrium state. Compared with multi-dimensional case, it is much harder to get optimal time decay rate by direct spectrum method due to a slower convergence rate of the fundamental solution in 1D case. To overcome this main difficulty, we need to first carry out time-weighted energy estimates (not optimal) for higher order derivatives, and based on these time-weighted estimates, we can close a priori assumptions and get the optimal time decay rate by spectrum analysis method. Moreover, due to non-conserved form and insufficient decay rate of the coupled drag force terms between the two-phase flows, we essentially need to use momentum variables $(m= \rho u, M=n\omega)$, rather than velocity variables $(u, \omega)$ in the spectrum analysis, to fully cancel out those non-conserved and insufficiently time-decay drag force terms. Finally, we study the singularity formation of the two-phase flow. We consider the blow-up of Euler equations in Euler-Navier-Stokes system. For Euler equations, we use Riemann invariants to construct decoupled Riccati type ordinary differential equations for smooth solutions and provide some sufficient conditions under which the classical solutions must break down in finite time.
2023-12-04 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Almost spanning distance trees in subsets of finite vector spaces 인쇄
by Ben Lund(IBS 이산수학그룹)
For $d\ge 2$ and an odd prime power $q$, let $\mathbb{F}_q^d$ be the $d$-dimensional vector space over the finite field $\mathbb{F}_q$. The distance between two points $(x_1,\ldots,x_d)$ and $(y_1,\ldots,y_d)$ is defined to be $\sum_{i=1}^d (x_i-y_i)^2$. An influential result of Iosevich and Rudnev is: if $E \subset \mathbb{F}_q^d$ is sufficiently large and $t \in \mathbb{F}_q$, then there are a pair of points $x,y \in E$ such that the distance between $x$ and $y$ is $t$. Subsequent works considered embedding graphs of distances, rather than a single distance. I will discuss joint work with Debsoumya Chakraborti, in which we show that every sufficiently large subset of $\mathbb{F}_q^d$ contains every nearly spanning tree of distances with bounded degree in each distance. The main novelty in this result is that the distance graphs we find are nearly as large as the set $S$ itself, but even for smaller distance trees our work leads to quantitative improvements to previously known bounds. A key ingredient in our proof is a new colorful generalization of a classical result of Haxell on finding nearly spanning bounded-degree trees in expander graphs. This is joint work with Debsoumya Chakraborti.
2023-12-08 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 최우철(성균관대학교 수학과)
Distributed optimization is a concept that multi-agent systems find a minimal point of a global cost functions which is a sum of local cost functions known to the agents. It appears in diverse fields of applications such as federated learning for machine learning problems and the multi-robotics systems. In this talk, I will introduce motivations for distributed optimization and related algorithms with their theoretical issues for developing efficient and robust algorithms.
2023-12-11 / 13:30 ~ 14:30
학과 세미나/콜로퀴엄 - 대수기하학: On Brauer Groups of Smooth Toric Varieties and Toric Schemes over a Discrete Valuation Ring 인쇄
by 이종후(Ohio State University)
Abstract: In 1993, Demeyer and Ford computed the Brauer group of a smooth toric variety over an algebraically closed field of characteristic zero. One may pose the same question to the toric varieties over any field of positive characteristic. Another interesting question is what will happen if we replace the base field by a discrete valuation ring, thereby replacing smooth toric varieties by smooth toric schemes over a discrete valuation ring in the sense of Kempf-Knudsen-Mumford-Saint-Donat. In this talk. I am going to discuss the answers to these questions. This is joint work with Roy Joshua.
2023-12-08 / 16:00 ~ 17:00
학과 세미나/콜로퀴엄 - 박사논문심사: 생성함수의 연립 2차 방정식 풀이를 통한 명제논리계에서 항진명제의 밀도 계산 인쇄
by 엄태현(KAIST)

2023-12-08 / 16:00 ~ 17:00
학과 세미나/콜로퀴엄 - 미분기하 세미나: 인쇄
by 이상훈(KIAS)
We prove that the zero function is the only solution to a certain degenerate PDE defined in the upper half-plane under some geometric assumptions. This result implies that the Euclidean metric is the only adapted compactification of the standard half-plane model of hyperbolic space when the scalar curvature of the compactified metric has a certain sign. These Liouville-type theorems are expected to handle the boundary curvature blow-up to prove compactness results of CCE(conformally compact Einstein) manifolds with positive scalar curvature on the conformal infinity.
2023-12-04 / 16:00 ~ 18:00
IBS-KAIST 세미나 - 대수기하학: 인쇄
by ()
The Nagata Conjecture governs the minimal degree required for a plane algebraic curve to pass through a collection of $r$ general points in the projective plane $P^2$ with prescribed multiplicities. The "SHGH" Conjecture governs the dimension of the linear space of these polynomials. We formulate transcendental versions of these conjectures in term of pluripotential theory and we're making some progress.
2023-12-08 / 11:00 ~ 12:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
TBD
2023-12-07 / 14:30 ~ 15:45
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
(information) "Introduction to Oriented Matroids" Series Thursdays 14:30-15:45
2023-12-07 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by 최건호()

2023-12-05 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: Colloquium: Real Eigenvalues of Asymmetric Random Matrices 인쇄
by 변성수(서울대학교 수리과학부)
In this talk, I will discuss how the fundamental concepts in probability theory—the law of large numbers, the central limit theorem, and the large deviation principle—are developed in the study of real eigenvalues of asymmetric random matrices.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download