Tuesday, September 19, 2023

<< >>  
2023. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2023. 9
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
2023. 10
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2023-09-25 / 10:30 ~ 12:00
학과 세미나/콜로퀴엄 - 응용 및 계산수학 세미나: 인쇄
by 최우진(KAIST)
최근의 생성모델에 관하여 스탠포드대학의 Ermon교수팀에서 NeurIPS2019, ICLR2021에 발표한 아래의 2편의 논문을 집중 리뷰하면서 SDE를 이용한 Generative Modeling의 연구동향과 발전 방향을 심층토의하게 됩니다.
2023-09-21 / 11:50 ~ 12:40
대학원생 세미나 - 대학원생 세미나: Quantized slow blow up dynamics for the energy-critical co-rotational wave maps problem 인쇄
by 정의현(Dept. of Mathematical Sciences, KAIST)
In this talk, we consider the blow-up dynamics of co-rotational solutions for energy-critical wave maps with the 2-sphere target. We briefly introduce the (2+1)-dimensional wave maps problem and its co-rotational symmetry, which reduces the full wave map to the (1+1)-dimensional semilinear wave equation. Under such symmetry, we see that this problem has a unique explicit stationary solution, so-called "harmonic map". Then we point out some of the works of analyzing the long-term dynamics of the flow near the harmonic map. Among them, we focus on the smooth blow-up result that corresponds to the stable regime. In particular, the case where the homotopy index is one has a distinctive nature from the other cases, which allows us to exhibit the smooth blow-up with the quantized blow-up rates corresponding to the excited regime.
2023-09-26 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Solving Problems in Graph Pebbling using Optimization and Structural Techniques 인쇄
by Carl R. Yerger(Davidson College)
Graph pebbling is a combinatorial game played on an undirected graph with an initial configuration of pebbles. A pebbling move consists of removing two pebbles from one vertex and placing one pebbling on an adjacent vertex. The pebbling number of a graph is the smallest number of pebbles necessary such that, given any initial configuration of pebbles, at least one pebble can be moved to a specified target vertex. In this talk, we will give a survey of several streams of research in pebbling, including describing a theoretical and computational framework that uses mixed-integer linear programming to obtain bounds for the pebbling numbers of graphs. We will also discuss improvements to this framework through the use of newly proved weight functions that strengthen the weight function technique of Hurlbert. Finally, we will discuss some open extremal problems in pebbling, specifically related to Class 0 graphs and describe how structural graph theoretic techniques such as discharging can be used to obtain results. Collaborators on these projects include Dan Cranson, Dominic Flocco, Luke Postle, Jonad Pulaj, Chenxiao Xue, Marshall Yang, Daniel Zhou.
2023-09-21 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: 인쇄
by ()
We will discuss certain main problems concerning group actions on 1-dimensional manifolds (the circle and the interval) and perspectives for future research.
2023-09-21 / 14:30 ~ 15:45
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
(information) "Introduction to Oriented Matroids" Series Thursdays 14:30-15:45
2023-09-19 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Orthogonal matroids over tracts 인쇄
by 김동규(KAIST & IBS 이산수학그룹)
Even delta-matroids generalize matroids, as they are defined by a certain basis exchange axiom weaker than that of matroids. One natural example of even delta-matroids comes from a skew-symmetric matrix over a given field $K$, and we say such an even delta-matroid is representable over the field $K$. Interestingly, a matroid is representable over $K$ in the usual manner if and only if it is representable over $K$ in the sense of even delta-matroids. The representability of matroids got much interest and was extensively studied such as excluded minors and representability over more than one field. Recently, Baker and Bowler (2019) integrated the notions of $K$-representable matroids, oriented matroids, and valuated matroids using tracts that are commutative ring-like structures in which the sum of two elements may output no element or two or more elements. We generalize Baker-Bowler's theory of matroids with coefficients in tracts to orthogonal matroids that are equivalent to even delta-matroids. We define orthogonal matroids with coefficients in tracts in terms of Wick functions, orthogonal signatures, circuit sets, and orthogonal vector sets, and establish basic properties on functoriality, duality, and minors. Our cryptomorphic definitions of orthogonal matroids over tracts provide proofs of several representation theorems for orthogonal matroids. In particular, we give a new proof that an orthogonal matroid is regular (i.e., representable over all fields) if and only if it is representable over $\mathbb{F}_2$ and $\mathbb{F}_3$, which was originally shown by Geelen (1996), and we prove that an orthogonal matroid is representable over the sixth-root-of-unity partial field if and only if it is representable over $\mathbb{F}_3$ and $\mathbb{F}_4$. This is joint work with Tong Jin.
2023-09-26 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: Colloquium: Quantum-Classical Correspondence from an Analytic Point of View 인쇄
by 정인지(서울대학교 수리과학부)
We prove that the twisting in Hamiltonian flows on annular domains, which can be quantified by the differential winding of particles around the center of the annulus, is stable to perturbations. In fact, it is possible to prove the stability of the whole of the lifted dynamics to non-autonomous perturbations, though single particle paths are generically unstable. These all-time stability facts are used to establish a number of results related to the long-time behavior of fluid flows. (Joint work with T. Drivas and T. Elgindi)
2023-09-22 / 14:00 ~ 16:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
A key goal of synthetic biology is to establish functional biochemical modules with network-independent properties. Antithetic integral feedback (AIF) is a recently developed control module in which two control species perfectly annihilate each other’s biological activity. The AIF module confers robust perfect adaptation to the steady-state average level of a controlled intracellular component when subjected to sustained perturbations. Recent work has suggested that such robustness comes at the unavoidable price of increased stochastic fluctuations around average levels. We present theoretical results that support and quantify this trade-off for the commonly analyzed AIF variant in the idealized limit with perfect annihilation. However, we also show that this trade-off is a singular limit of the control module: Even minute deviations from perfect adaptation allow systems to achieve effective noise suppression as long as cells can pay the corresponding energetic cost. We further show that a variant of the AIF control module can achieve significant noise suppression even in the idealized limit with perfect adaptation. This atypical configuration may thus be preferable in synthetic biology applications.
2023-09-20 / 16:00 ~ 17:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
Typically, the mathematical description of reaction networks involves a system of parameter-dependent ordinary differential equations. Generally, one is interested in the qualitative and quantitative behavior of solutions in various parameter regions. In applications, identifying the reaction parameters is a fundamental task. Reduction of dimension is desirable from a practical perspective, and even necessary when different timescales are present. For biochemical reaction networks, a classical reduction technique assumes quasi-steady state (QSS) of certain species. From a general mathematical perspective, singular perturbation theory – involving a small parameter – is often invoked. The talk is mathematically oriented. The following points will be discussed: Singular perturbation reduction in general coordinates. (“How does one compute reductions?”) Critical parameters for singular perturbations. (“How does one find small parameters?”) Quasi-steady state and singular perturbations. (“What is applicable, what is correct?”)
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download