One of the classical and most fascinating problems at the intersection between combinatorics and number theory is the study of the parity of the partition function. Even though p(n) in widely believed to be equidistributed modulo 2, progress in the area has proven exceptionally hard. The best results available today, obtained incrementally over several decades by Serre, Soundarajan, Ono and many otehrs, do not even guarantee that, asymptotically, p(n) is odd for /sqrt{x} values of n/neq x,
In this talk, we present a new, general conjectural framework that naturally places the parity of p(n) into the much broader, number-theoretic context of eta-eqotients. We discuss the history of this problem as well as recent progress on our "master conjecture," which includes novel results on multi-and regular partitions. We then show how seemingly unrelated classes of eta-equotients carry surprising (and surprisingly deep) connections modulo 2 to the partition function. One instance is the following striking result: If any t-multiparition function, with t/neq 0(mod 3), is odd with positive density, then so is p(n). (Note that proving either fact unconditionally seems entirely out of reach with current methods.) Throughout this talk, we will give a sense of the many interesting mathematical techniques that come into play in this area. They will include a variety of algebraic and combinatorial ideas, as well as tools from modular forms and number theory.
|