Given a smooth manifold or orbifold M and a Lie group G acting transitively on a space X, we consider the space of all (G, X)-structures on M up to an appropriate equivalence relation. This space, known as the deformation space of (G, X)-structures on M, encodes information about how one can "deform" the (G, X)-manifold M. In this talk, I will provide a general definition of deformation spaces and character varieties, which capture the local structure of the deformation space. Additionally, I will introduce a class of orbifolds called the Coxeter orbifolds, for which deformation spaces can be computed using an approach due to the foundational work of E. Vinberg.
|