"CausalXtract: a flexible pipeline to extract causal effects from live-cell time-lapse imaging data”, by Franck Simon et.al., bioRxiv, 2024, will be discussed in the Journal Club. The abstract is the following :
Live-cell microscopy routinely provides massive amount of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell-cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer associated fibroblasts directly inhibit cancer cell apoptosis, independently from anti-cancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.
If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact jaekkim@kaist.ac.kr if you first come IBS to get permission to enter IBS building.
|