Monday, June 30, 2025

<< >>  
2025. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2025. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
2025. 7
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2025-07-07 / 13:00 ~ 14:00
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
Lattice field theories provide a discrete, probabilistic framework for approximating continuum quantum field theories. These models, originally motivated by statistical mechanics, are central to constructive approaches in mathematical physics. A fundamental challenge is to rigorously establish the continuum limit as the lattice spacing tends to zero, yielding singular but physically meaningful Gibbs measures on function spaces. Beyond this small scale (ultraviolet) limit, another major theme, especially from the viewpoint of statistical mechanics, is the analysis of large scale (infrared) behavior in the infinite volume limit. This involves understanding how thermodynamic properties, phase structure, and fluctuation phenomena emerge as the size of the physical system increases. In this three part minicourse, we will explore both aspects of this limiting procedure through the lens of probabilistic methods and stochastic quantization. While the Euclidean Φ^4 quantum field theory will serve as our primary example, the broader goal is to illustrate how continuum quantum field theories can be constructed as scaling limits of lattice models, unifying perspectives from statistical mechanics, field theory, PDEs, and probability.
2025-07-04 / 13:00 ~ 14:00
학과 세미나/콜로퀴엄 - 기타: 인쇄
by ()
Lattice field theories provide a discrete, probabilistic framework for approximating continuum quantum field theories. These models, originally motivated by statistical mechanics, are central to constructive approaches in mathematical physics. A fundamental challenge is to rigorously establish the continuum limit as the lattice spacing tends to zero, yielding singular but physically meaningful Gibbs measures on function spaces. Beyond this small scale (ultraviolet) limit, another major theme, especially from the viewpoint of statistical mechanics, is the analysis of large scale (infrared) behavior in the infinite volume limit. This involves understanding how thermodynamic properties, phase structure, and fluctuation phenomena emerge as the size of the physical system increases. In this three part minicourse, we will explore both aspects of this limiting procedure through the lens of probabilistic methods and stochastic quantization. While the Euclidean Φ^4 quantum field theory will serve as our primary example, the broader goal is to illustrate how continuum quantum field theories can be constructed as scaling limits of lattice models, unifying perspectives from statistical mechanics, field theory, PDEs, and probability.
2025-07-03 / 13:00 ~ 14:00
학과 세미나/콜로퀴엄 - 기타: 인쇄
by 성기훈()
Lattice field theories provide a discrete, probabilistic framework for approximating continuum quantum field theories. These models, originally motivated by statistical mechanics, are central to constructive approaches in mathematical physics. A fundamental challenge is to rigorously establish the continuum limit as the lattice spacing tends to zero, yielding singular but physically meaningful Gibbs measures on function spaces. Beyond this small scale (ultraviolet) limit, another major theme, especially from the viewpoint of statistical mechanics, is the analysis of large scale (infrared) behavior in the infinite volume limit. This involves understanding how thermodynamic properties, phase structure, and fluctuation phenomena emerge as the size of the physical system increases. In this three part minicourse, we will explore both aspects of this limiting procedure through the lens of probabilistic methods and stochastic quantization. While the Euclidean Φ^4 quantum field theory will serve as our primary example, the broader goal is to illustrate how continuum quantum field theories can be constructed as scaling limits of lattice models, unifying perspectives from statistical mechanics, field theory, PDEs, and probability.
2025-07-04 / 14:00 ~ 16:00
학과 세미나/콜로퀴엄 - 기타: Chow groups and intersection products #2 인쇄
by 김재홍(KAIST)
(This is a reading seminar talk by a graduate student, Mr. Jaehong Kim.) This talk is a reading seminar about basic intersection theory, following chapter 1 to 6 of the book of William Fulton. The main objects to be dealt with are Chow groups, pullback/pushforward, pseudo-divisors, divisor intersection, Chern/Segre classes, deformation to the normal cone and intersection products.
2025-07-01 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Asymptotic dimension of intersection graphs 인쇄
by Sergey Norin(McGill University)
The notion of asymptotic dimension of metric spaces, introduced by Gromov, describes their large-scale behaviour. Asymptotic dimension of graph families has been recently studied, in particular, by Bonamy et al. who proved that the asymptotic dimension of proper minor-closed graph families is at most two. We will discuss nerve-type theorems for asymptotic dimension. In particular, we show that the asymptotic dimension of intersection graphs of balls and spheres in $\mathbb{R}^d$ is at most $d+1$. Based on joint work with Zdeněk Dvořák and with Chun-Hung Liu.
2025-07-04 / 14:00 ~ 16:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by ()
In this talk, we discuss the paper “Machine learning methods trained on simple models can predict critical transitions in complex natural systems” by Smita Deb, Sahil Sidheekh, Christopher F. Clements, Narayanan C. Krishnan, and Partha S. Dutta, in Royal Society Open Science, (2022).
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download