Wednesday, July 3, 2024

<< >>  
2024. 6
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
2024. 7
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
2024. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2024-07-05 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 기타: Introduction to Milnor K-theory 2: some computations and tame / residue symbols 인쇄
by 사킵 무쉬타크 샤(Indian Statistical Institute - Bangalore)
Mr. Saqib Mushtaq Shah, a KAIX visiting graduate student from ISI Bangalore who will stay at KAIST for 8 weeks, is going to give a series of weekly talks on the Milnor K-theory from the beginning. It is part of his KAIX summer internship works.
2024-07-04 / 16:50 ~ 17:30
편미분방정식 통합연구실 세미나 - 편미분방정식: Thom's gradient conjecture for nonlinear evolution equations part II 인쇄
by 최범준()
Following the brief introduction to Lojasiewicz's theory in the first part, in the second part we discuss Thom's gradient conjecture and our recent joint work with Pei-Ken Hung where we generalized this conjecture to the class of PDEs. The result classifies the next-order asymptotics by revealing both the rate and the direction of convergence to the limit. Finally we talk about possible future applications and working directions.
2024-07-03 / 14:00 ~ 16:00
학과 세미나/콜로퀴엄 - 기타: Introduction to complex algebraic geometry and Hodge theory #8 인쇄
by 김재홍(KAIST)
This is part of an informal seminar series to be given by Mr. Jaehong Kim, who has been studying the book "Hodge theory and Complex Algebraic Geometry Vol 1 by Claire Voisin" for a few months. It will summarize about 70-80% of the book.
2024-07-05 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Random matchings in linear hypergraphs 인쇄
by Hyunwoo Lee(KAIST & IBS Extremal Combinatorics and Probabi)
For a given hypergraph $H$ and a vertex $v\in V(H)$, consider a random matching $M$ chosen uniformly from the set of all matchings in $H.$ In $1995,$ Kahn conjectured that if $H$ is a $d$-regular linear $k$-uniform hypergraph, the probability that $M$ does not cover $v$ is $(1 + o_d(1))d^{-1/k}$ for all vertices $v\in V(H)$. This conjecture was proved for $k = 2$ by Kahn and Kim in 1998. In this paper, we disprove this conjecture for all $k \geq 3.$ For infinitely many values of $d,$ we construct $d$-regular linear $k$-uniform hypergraph $H$ containing two vertices $v_1$ and $v_2$ such that $\mathcal{P}(v_1 \notin M) = 1 – \frac{(1 + o_d(1))}{d^{k-2}}$ and $\mathcal{P}(v_2 \notin M) = \frac{(1 + o_d(1))}{d+1}.$ The gap between $\mathcal{P}(v_1 \notin M)$ and $\mathcal{P}(v_2 \notin M)$ in this $H$ is best possible. In the course of proving this, we also prove a hypergraph analog of Godsil’s result on matching polynomials and paths in graphs, which is of independent interest.
2024-07-04 / 16:00 ~ 16:40
편미분방정식 통합연구실 세미나 - 편미분방정식: Thom's gradient conjecture for nonlinear evolution equations part I 인쇄
by 최범준()
The analysis on the limiting behavior of solution is pivotal for equations in geometric analysis, mathematical physics and application in optimization. In 80s, Rene Thom conjectured that if an analytic gradient flow has a limit, then it approaches to the limit along a unique asymptotic direction. This represents a next-order question following the seminal works by Lojasiewicz and L. Simon. In 2000, Thom's conjecture was affirmatively proved by Kurdyka, Mostowski, and Parusinski for finite dimensional gradient flows. In this first part, we will discuss about the basics about theory of Lojasiewicz concerning the uniqueness of limits. Then we explore vast applications in PDEs which were initiated by Leon Simon.
2024-07-10 / 16:00 ~ 18:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
In the 1980's Casson and Gordon produced the first non slice knots which are trivial in Levine's algebraic concordance group, and in 2003 Cochran-Orr-Teichner produced the first no slice knots undetectable by Casson and Gordon's invariants. They do so by producing a filtration of the concordance group by subgroups a knot in the 1.5th term of this filtration has vanishing Casson-Gordon invariants. Since then this work has been central to the study of knot concordance. We will introduce this filtration and review just enough of the theory of L^2 homology to prove that the successive quotients of this filtration are nontrivial.
2024-07-08 / 16:00 ~ 18:00
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
In the 1970's J. Levine produced a surjection from the knot concordance group to the so called algebraic concordance group. This captured the known features of the knot concordance group to that point and classifies high dimensional concordance. During this survey talk we will explore the construction of the algebraic concordance group and explain some of its consequences.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download