In general relativity, spacetime is described by a (1+3)-dimensional Lorentzian manifold satisfying the Einstein equations, and initial data sets (i.e., fixed-time configurations) correspond to embedded spacelike hypersurfaces. The initial data sets are required to satisfy underdetermined PDEs called constraint equations -- in the language of differential geometry, these are exactly the Gauss and Codazzi equations. The goal of my talk will be to elucidate the flexibility of these objects -- specific results to be presented include extension, gluing, asymptotics-prescription, and parametrization of asymptotically flat initial data sets, often with sharp assumptions. Basic to our approach is a novel way to construct solution operators for divergence-type equations with prescribed support properties, which should be of independent interest. This part is based on joint work with Phil Isett (Caltech), Yuchen Mao (UC Berkeley), and Zhongkai Tao (UC Berkeley).
|