The mean curvature flow is an evolution of hypersurfaces satisfying a geometric heat equation. The flow changes its topology through singularities, and there are infinitely many singularity models. However, the flow is a gradient flow of an entropy functional, and there are only a few linearly stable singularities. Hence, one can conjecture that some perturbations of initial hypersurfaces would make the perturbed flows avoid linearly unstable singularities. In this talk, we will discuss how to use ancient flows for the avoidance of unstable singularities, and its application to the knot theory.
|