Abstract: In combinatorics, Hopf algebras appear naturally when studying various classes of combinatorial objects, such as graphs, matroids, posets or symmetric functions. Given such a class of combinatorial objects, basic information on these objects regarding assembly and disassembly operations are encoded in the algebraic structure of a Hopf algebra. One then hopes to use algebraic identities of a Hopf algebra to return to combinatorial identities of combinatorial objects of interest.
In this talk, I introduce a general class of combinatorial objects, which we call multi-complexes, which simultaneously generalizes graphs, hypergraphs and simplicial and delta complexes. I also introduce a combinatorial Hopf algebra obtained from multi-complexes. Then, I describe the structure of the Hopf algebra of multi-complexes by finding an explicit basis of the space of primitives, which is of combinatorial relevance. If time permits, I will illustrate some potential applications.
This is joint work with Miodrag Iovanov.
|