We consider the Cauchy problem of the self-dual Chern-Simons-Schrödinger equation (CSS) under equivariance symmetry. It is $L^2$-critical, has the pseudoconformal symmetry, and admits a soliton $Q$ for each equivariance index $m \geq 0$. An application of the pseudoconformal transform to $Q$ yields an explicit finite-time blow-up solution $S(t)$ which contracts at the pseudoconformal rate $|t|$. In the high equivariance case $m \geq 1$, the pseudoconformal blow-up for smooth finite energy solutions in fact occurs in a codimension one sense; it is stable under a codimension one perturbation, but also exhibits an instability mechanism. In the radial case $m=0$, however, $S(t)$ is no longer a finite energy blow-up solution. Interestingly enough, there are smooth finite energy blow-up solutions, but their blow-up rates differ from the pseudoconformal rate by a power of logarithm. We will explore these interesting blow-up dynamics (with more focus on the latter) via modulation analysis. This talk is based on my joint works with Soonsik Kwon and Sung-Jin Oh.
|