Geometric and topological structures can aid statistics in several ways. In high dimensional statistics, geometric structures can be used to reduce dimensionality. High dimensional data entails the curse of dimensionality, which can be avoided if there are low dimensional geometric structures. On the other hand, geometric and topological structures also provide useful information. Structures may carry scientific meaning about the data and can be used as features to enhance supervised or unsupervised learning.
In this talk, I will explore how statistical inference can be done on geometric and topological structures. First, given a manifold assumption, I will explore the minimax rate for estimating the dimension of the manifold. Second, also under the manifold assumption, I will explore the minimax rate for estimating the reach, which is a regularity quantity depicting how a manifold is smooth and far from self-intersecting. Third, I will investigate inference on persistent homology of a density function, where the persistent homology quantifies salient topological features that appear at different resolutions of the data. Fourth, I will explore how persistent homology can be further applied in machine learning.
|