For the mass-critical/supercritical pseudo-relativistic nonlinear Schrödinger equation, Bellazzini, Georgiev and Visciglia constructed a class of stationary solutions as local energy minimizers under an additional kinetic energy constraint, and they showed the orbital stability of the energy minimizer manifold. In this talk, by proving its local uniqueness, we show the orbital stability of the solitary wave, not that of the energy minimizer set. The key new aspect is reformulation of the variational problem in the non-relativistic regime, which is, we think, more natural because the proof heavily relies on the sub-critical nature of the limiting model. By this approach, the meaning of the additional constraint is clarified, a more suitable Gagliardo-Nirenberg inequality is introduced, and the non-relativistic limit is proved. Finally, using the non-relativistic limit, we obtain the local uniqueness and the non-degeneracy of the minimizer. This talk is based on joint work with Sangdon Jin.
|