One famous conjecture in quantum chaos and random matrix theory is the so-called phase transition conjecture of random band matrices. It predicts that the eigenvectors' localization-delocalization transition occurs at some critical bandwidth $W_c(d)$, which depends on the dimension $d$. The well-known Anderson model and Anderson conjecture have a similar phenomenon. It is widely believed that $W_c(d)$ matches $1/\lambda_c(d)$ in the Anderson conjecture, where $\lambda_c(d)$ is the critical coupling constant. Furthermore, this random matrix eigenvector phase transition coincides with the local eigenvalue statistics phase transition, which matches the Bohigas-Giannoni-Schmit conjecture in quantum chaos theory.
We proved the eigenvector's delocalization property for most of the general $d>=8$ random band matrix as long as the size of this random matrix does not grow faster than its bandwidth polynomially. In other words, as long as bandwidth $W$ is larger than $L^\epislon$ for some $\epislon>0$, and matrix size $L$.
It is joint work with H.T. Yau (Harvard) and F. Yang (Upenn).
|