Tuesday, August 3, 2021

<< >>  
2021. 7
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2021. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2021. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2021-08-10 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Intertwining connectivities for vertex-minors and pivot-minors 인쇄
by 이덕상(KAIST / IBS DIMAG)
We show that for pairs (Q,R) and (S,T) of disjoint subsets of vertices of a graph G, if G is sufficiently large, then there exists a vertex v in V(G)−(Q∪R∪S∪T) such that there are two ways to reduce G by a vertex-minor operation while preserving the connectivity between Q and R and the connectivity between S and T. Our theorem implies an analogous theorem of Chen and Whittle (2014) for matroids restricted to binary matroids. Joint work with Sang-il Oum.
2021-08-05 / 10:00 ~ 11:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
(전체일정: 7/28, 7/29, 8/3, 8/5) In 2d first-passage percolation, we let (t_e) be a family of i.i.d. weights associated to the edges of the square lattice, and let T = T(x,y) be the induced weighted graph metric on Z^2. If we let p be the probability that a weight takes the value 0, then there is a transition in the large-scale behavior of T depending on the value of p. Specifically, when p < 1/2, T grows linearly, but when p > 1/2, T is stochastically bounded. In these lectures, I will describe some of the standard questions of FPP in the case p < 1/2, and then focus on the "critical" case, where p = 1/2. Regarding this case, I will show some of my work over the last few years including exact asymptotics for T, universality results, and recent work on a dynamical version of the model. The work I will present was done in collaboration with J. Hanson, D. Harper, W.-K. Lam, P. Tang, and X. Wang. Lec 4: Critical FPP: the general case
2021-08-03 / 10:00 ~ 11:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
(전체일정: 7/28, 7/29, 8/3, 8/5) In 2d first-passage percolation, we let (t_e) be a family of i.i.d. weights associated to the edges of the square lattice, and let T = T(x,y) be the induced weighted graph metric on Z^2. If we let p be the probability that a weight takes the value 0, then there is a transition in the large-scale behavior of T depending on the value of p. Specifically, when p < 1/2, T grows linearly, but when p > 1/2, T is stochastically bounded. In these lectures, I will describe some of the standard questions of FPP in the case p < 1/2, and then focus on the "critical" case, where p = 1/2. Regarding this case, I will show some of my work over the last few years including exact asymptotics for T, universality results, and recent work on a dynamical version of the model. The work I will present was done in collaboration with J. Hanson, D. Harper, W.-K. Lam, P. Tang, and X. Wang. Lec 3: Critical FPP: the Bernoulli case
2021-08-04 / 10:00 ~ 11:00
SAARC 세미나 - SAARC 세미나: 인쇄
by ()
(전체일정: 7/26, 7/27, 8/2, 8/4) Lec 4: Information Percolation In this final lecture, we discuss the celebrated technique known as the information percolation introduced by Lubetzky and Sly. Then, we explain the application of this technique to Glauber dynamics of the Ising model on lattice, and of the Random cluster model. The last result is a joint work with Shirshendu Ganguly.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download