Wednesday, September 1, 2021

<< >>  
2021. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2021. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2021. 10
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2021-09-07 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Mixing sets, submodularity, and chance-constrained optimization 인쇄
by 이다빈(IBS 이산수학그룹)
A particularly important substructure in modeling joint linear chance-constrained programs with random right-hand sides and finite sample space is the intersection of mixing sets with common binary variables (and possibly a knapsack constraint). In this talk, we first explain basic mixing sets by establishing a strong and previously unrecognized connection to submodularity. In particular, we show that mixing inequalities with binary variables are nothing but the polymatroid inequalities associated with a specific submodular function. This submodularity viewpoint enables us to unify and extend existing results on valid inequalities and convex hulls of the intersection of multiple mixing sets with common binary variables. Then, we study such intersections under an additional linking constraint lower bounding a linear function of the continuous variables. This is motivated from the desire to exploit the information encoded in the knapsack constraint arising in joint linear CCPs via the quantile cuts. We propose a new class of valid inequalities and characterize when this new class along with the mixing inequalities are sufficient to describe the convex hull. This is based on joint work with Fatma Fatma Kılınç-Karzan and Simge Küçükyavuz.
2021-09-08 / 17:00 ~ 18:00
학과 세미나/콜로퀴엄 - 수리생물학: 인쇄
by ()
While the presence of immune cells within solid tumours was initially viewed positively, as the host fighting to rid itself of a foreign body, we now know that the tumour can manipulate immune cells so that they promote, rather than inhibit, tumour growth. Immunotherapy aims to correct for this by boosting and/or restoring the normal function of the immune system. Immunotherapy has delivered some extremely promising results. However, the complexity of the tumour-immune interactions means that it can be difficult to understand why one patient responds well to immunotherapy while another does not. In this talk, we will show how mathematical, statistical and topological methods can contribute to resolving this issue and present recent results which illustrate the complementary insight that different approaches can deliver.
2021-09-02 / 10:00 ~ 11:00
학과 세미나/콜로퀴엄 - 수리생물학: 인쇄
by ()
Our current approach to cancer treatment has been largely driven by finding molecular targets, those patients fortunate enough to have a targetable mutation will receive a fixed treatment schedule designed to deliver the maximum tolerated dose (MTD). These therapies generally achieve impressive short-term responses, that unfortunately give way to treatment resistance and tumor relapse. The importance of evolution during both tumor progression, metastasis and treatment response is becoming more widely accepted. However, MTD treatment strategies continue to dominate the precision oncology landscape and ignore the fact that treatments drive the evolution of resistance. Here we present an integrated theoretical/experimental/clinical approach to develop treatment strategies that specifically embrace cancer evolution. We will consider the importance of using treatment response as a critical driver of subsequent treatment decisions, rather than fixed strategies that ignore it. We will also consider using mathematical models to drive treatment decisions based on limited clinical data. Through the integrated application of mathematical and experimental models as well as clinical data we will illustrate that, evolutionary therapy can drive either tumor control or extinction using a combination of drug treatments and drug holidays. Our results strongly indicate that the future of precision medicine shouldn’t be in the development of new drugs but rather in the smarter evolutionary, and model informed, application of preexisting ones.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download