Thursday, September 9, 2021

<< >>  
2021. 8
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2021. 9
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
2021. 10
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2021-09-09 / 16:30 ~ 17:30
학과 세미나/콜로퀴엄 - 학부생 콜로퀴엄: Me, Myself, and Statistical Data Science 인쇄
by 박철우(수리과학과)
I will talk about data science and Big Data, and how I view statistics in the data science and Big Data era. Next, I will briefly introduce my research areas in statistics. Finally, I will present some of my interdisciplinary research on functional magnetic resonance imaging data analysis.
2021-09-16 / 16:15 ~ 17:15
학과 세미나/콜로퀴엄 - 콜로퀴엄: Statistical Analysis of Practice-Related Changes in Neural Circuitry Supporting Eye Movements 인쇄
by 박철우(KAIST 수리과학과)
The objective of the study is to evaluate neural circuitry supporting a cognitive control task, and associated practice-related changes via acquisition of blood oxygenation level dependent (BOLD) signal collected using functional magnetic resonance imaging (fMRI). FMR images are acquired from participants engaged in antisaccade (generating a glance away from a cue) performance at two scanning sessions: 1) pre-practice before any exposure to the task, and 2) post-practice, after one week of daily practice on antisaccades, prosaccades (glancing towards a target) or fixation (maintaining gaze on a target). The three practice groups are compared across the two sessions, and analyses are conducted via the application of a model-free clustering technique based on wavelet analysis. This series of procedures is developed to address analysis problems inherent in fMRI data and is composed of several steps: data aggregation, no trend test, decorrelation, principal component analysis and K-means clustering. Also, we develop a semiparametric approach under shape invariance to quantify and test the differences in sessions and groups using the property that brain signals from a task-related experiment may exhibit a similar pattern in regions of interest across participants. We estimate the common function with local polynomial regression and estimate the shape invariance model parameters using evolutionary optimization methods. Using the proposed approach, we compare BOLD signals in multiple regions of interest for the three practice groups at the two sessions and quantify the effects of task practice in these groups.
2021-09-16 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 수리생물학: 인쇄
by ()
Questions about the mechanistic operation of biological systems are naturally formulated as stochastic processes, but confronting such models with data can be challenging. In this talk, I describe the essence of the difficulty, highlighting both the technical issues and the importance of the “plug-and-play property”. I then illustrate some effective approaches to efficient inference based on such models. I conclude by sketching promising new developments and describing some open problems.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download