In my first talk I am going to speak about Schubert calculus. Let G/B be a flag variety, where G is a linear simple algebraic group, and B is a Borel subgroup. Schubert calculus studies (in classical terms) multiplication in the cohomology ring of a flag variety over the complex numbers, or (in more algebraic terms) the Chow ring of the flag variety. This ring is generated as a group by the classes of so-called Schubert varieties (or their Poincare duals, if we speak about the classical cohomology ring), i. e. of the varieties of the form BwB/B, where w is an element of the Weyl group. As a ring, it is almost generated by the classes of Schubert varieties of codimension 1, called Schubert divisors. More precisely, the subring generated by Schubert divisors is a subgroup of finite index. These two facts lead to the following general question: how to decompose a product of Schubert divisors into a linear combination of Schubert varieties. In my talk, I am going to address (and answer if I have time) two more particular versions of this question: If G is of type A, D, or E, when does a coefficient in such a linear combination equal 0? When does it equal 1?
|