Tuesday, February 8, 2022

<< >>  
2022. 1
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2022. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28
2022. 3
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2022-02-15 / 13:00 ~ 15:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 김찬우()
We talk about a convergence of kinetic vorticity of Boltzmann toward the vorticity of incompressible Euler in 2D. The talk would be self-contained (1) covering necessary background in basic Boltzmann theory, asymptotic expansion (Hilbert expansion). (2) When the Euler vorticity is below Yudovich, we prove a weak convergence toward Lagrangian solutions, (3) while for the Yudovich class we have a strong convergence toward a unique solution with a rate.
2022-02-14 / 13:00 ~ 15:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 김찬우()
We talk about a convergence of kinetic vorticity of Boltzmann toward the vorticity of incompressible Euler in 2D. The talk would be self-contained (1) covering necessary background in basic Boltzmann theory, asymptotic expansion (Hilbert expansion). (2) When the Euler vorticity is below Yudovich, we prove a weak convergence toward Lagrangian solutions, (3) while for the Yudovich class we have a strong convergence toward a unique solution with a rate.
2022-02-15 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Independent domination of graphs with bounded maximum degree 인쇄
by 김진하(IBS 이산수학그룹)
An independent dominating set of a graph, also known as a maximal independent set, is a set $S$ of pairwise non-adjacent vertices such that every vertex not in $S$ is adjacent to some vertex in $S$. We prove that for $\Delta=4$ or $\Delta\ge 6$, every connected $n$-vertex graph of maximum degree at most $\Delta$ has an independent dominating set of size at most $(1-\frac{\Delta}{ \lfloor\Delta^2/4\rfloor+\Delta })(n-1)+1$. In addition, we characterize all connected graphs having the equality and we show that other connected graphs have an independent dominating set of size at most $(1-\frac{\Delta}{ \lfloor\Delta^2/4\rfloor+\Delta })n$. This is joint work with Eun-Kyung Cho, Minki Kim, and Sang-il Oum.
2022-02-08 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: A unified Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups 인쇄
by Pascal Gollin(IBS 이산수학그룹)
Erdős and Pósa proved in 1965 that there is a duality between the maximum size of a packing of cycles and the minimum size of a vertex set hitting all cycles. We therefore say that cycles satisfy the Erdős-Pósa property. However, while odd cycles do not satisfy the Erdős-Pósa property, Reed proved in 1999 an analogue by relaxing packing to half-integral packing, where each vertex is allowed to be contained in at most two such cycles. Moreover, he gave a structural characterisation for when the Erdős-Pósa property for odd cycles fails. We prove a far-reaching generalisation of the theorem of Reed; if the edges of a graph are labelled by finitely many abelian groups, then the cycles whose values avoid a fixed finite set for each abelian group satisfy the half-integral Erdős-Pósa property, and we similarly give a structural characterisation for the failure of the Erdős-Pósa property. A multitude of natural properties of cycles can be encoded in this setting. For example, we show that the cycles of length $\ell$ modulo $m$ satisfy the half-integral Erdős-Pósa property, and we characterise for which values of $\ell$ and $m$ these cycles satisfy the Erdős-Pósa property. This is joint work with Kevin Hendrey, Ken-ichi Kawarabayashi, O-joung Kwon, Sang-il Oum, and Youngho Yoo.
2022-02-11 / 10:30 ~ 11:45
학과 세미나/콜로퀴엄 - 대수기하학: An introductory guide to mixed Hodge modules #1 인쇄
by 정승조(전북대학교)
Morihiko Saito's theory of mixed Hodge modules is a far generalisation of classical Hodge theory, which is based on the theory of perverse sheaves, D-modules, variations of Hodge structures. One can think of mixed Hodge modules as a certain class of D-modules with Hodge structures. Naturally they are accompanied by perverse sheaves via the Riemann–Hilbert correspondence. This guide consists of about 8 talks, which may cover: review of classical Hodge theory, D-modules and filtered D-modules, nearby and vanishing cycles, etc. The main goal is to understand the notion of mixed Hodge modules and to explain two important theorems: the structure theorem and the direct image theorem. If time permits, we discuss recent applications of the theory in algebraic geometry.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download