KAIX Distinguished lectures in Mathematics
Speaker : Wen-Ching Winnie Li (Distinguished Professor of Mathematics, Penn. State Univ.)
2021.11.09 (Tue) - Korean time
09:30-10:30 Colloquium talk
Primes in Number Theory and Combinatorics
10:30-10:50 Q&A
11:00-12:00(noon) Seminar Talk
Pair arithmetical equivalence for quadratic fields
ZOOM ID : 518 127 6292
(No password required)
Abstract:
1. colloquium talk
Title: Primes in number theory and combinatorics
Abstract: Prime numbers are a central topic in number theory. They have inspired the study of many subjects in mathematics. Regarding prime numbers as the building blocks of the multiplicative structure of positive integers, in this survey talk we shall interpret "primes" as the basic elements in a structure of interest arising from combinatorics and number theory, and explore their distributions of various kinds. More precisely, we shall examine primes in compact Riemann surfaces, graphs, and 2-dimensional simplicial complexes, respectively. These results are products of rich interplay between number theory and combinatorics.
2. number theory seminar talk
Title: Pair arithmetical equivalence for quadratic fields
Abstract: Given two nonisomorphic number fields K and M, and two finite order Hecke characters $\chi$ of K and $\eta$ of M respectively, we say that the pairs $(\chi, K)$ and $(\eta, M)$ are arithmetically equivalent if the associated L-functions coincide: $L(s, \chi, K) = L(s, \eta, M)$. When the characters are trivial, this reduces to the question of fields with the same Dedekind zeta function, investigated by Gassmann in 1926, who found such fields of degree 180, and by Perlis in 1977 and others, who showed that there are no arithmetically equivalent fields of degree less than 7.
In this talk we discuss arithmetically equivalent pairs where the fields are quadratic. They give rise to dihedral automorphic forms induced from characters of different quadratic fields. We characterize when a given pair is arithmetically equivalent to another pair, explicitly construct such pairs for infinitely many quadratic extensions with odd class number, and classify such characters of order 2.
This is a joint work with Zeev Rudnick.
|